
ISSN 0252–9742

Bulletin
of the

European Association for

Theoretical Computer Science

EATCS

EA
T

C
S

Number 119 June 2016

Council of the

European Association for

Theoretical Computer Science

President: Luca Aceto Iceland
Vice Presidents: Paul Spirakis United Kingdom and Greece

Antonin Kucera Czech Republic
Giuseppe Persiano Italy

Treasurer: Dirk Janssens Belgium
Bulletin Editor: Kazuo Iwama Kyoto, Japan

Lars Arge Denmark
Jos Baeten The Netherlands
Lars Birkedal Denmark
Mikolaj Bojanczyk Poland
Fedor Fomin Norway
Pierre Fraigniaud France
Leslie Ann Goldberg UK
Magnus Halldorsson Iceland
Monika Henzinger Austria
Christos Kaklamanis Greece
Elvira Mayordomo Spain
Michael Mitzenmacher USA

Anca Muscholl France
Luke Ong UK
Catuscia Palamidessi France
Giuseppe Persiano Italy
Alberto Policriti Italy
Alberto Marchetti Spaccamela Italy
Vladimiro Sassone UK
Thomas Schwentick Germany
Jukka Suomela Finland
ThomasWilke Germany
PeterWidmayer Switzerland
GerhardWöeginger The Netherlands

Past Presidents:
Maurice Nivat (1972–1977) Mike Paterson (1977–1979)
Arto Salomaa (1979–1985) Grzegorz Rozenberg (1985–1994)
Wilfred Brauer (1994–1997) Josep Díaz (1997–2002)
Mogens Nielsen (2002–2006) Giorgio Ausiello (2006–2009)
Burkhard Monien (2009–2012)

Secretary Office: Ioannis Chatzigiannakis Italy
Efi Chita Greece

EATCS Council Members
email addresses

Luca Aceto . luca@ru.is
Lars Arge . large@madalgo.au.dk
Jos Baeten . jos.baeten@cwi.nl
Lars Birkedal . large@madalgo.au.dk
Mikolaj Bojanczyk . bojan@mimuw.edu.pl
Fedor Fomin . fomin@ii.uib.no
Pierre Fraigniaud . . pierre.fraigniaud@liafa.univ-paris-diderot.fr
Leslie Ann Goldberg leslie.goldberg@cs.ox.ac.uk
Magnus Halldorsson . magnusmh@gmail.com
Monika Henzinger monika.henzinger@univie.ac.at
Kazuo Iwama . iwama@kuis.kyoto-u.ac.jp
Dirk Janssens . Dirk.Janssens@ua.ac.be
Christos Kaklamanis . kakl@ceid.upatras.gr
Antonin Kucera . tony@fi.muni.cz
Elvira Mayordomo . elvira@unizar.es
Michael Mitzenmacher michaelm@eecs.harvard.edu
Anca Muscholl . anca@labri.fr
Luke Ong . luke.Ong@cs.ox.a.uk
Catuscia Palamidessi catuscia@lix.polytechnique.fr
Giuseppe Persiano . giuper@dia.unisa.it
Alberto Policriti alberto.policriti@uniud.it
Alberto Marchetti Spaccamela alberto@dis.uniroma1.it
Vladimiro Sassone . vs@ecs.soton.ac.uk
Thomas Schwentick thomas.schwentick@udo.edu
Paul Spirakis . p.spirakis@liverpool.ac.uk
Jukka Suomela . jukka.suomela@aalto.fi
ThomasWilke thomas.wilke@email.uni-kiel.de
PeterWidmayer . widmayer@inf.ethz.ch
GerhardWöeginger g.j.woeginger@math.utwente.nl

Bulletin Editor: Kazuo Iwama, Kyoto, Japan
Cartoons: DADARA, Amsterdam, The Netherlands

The bulletin is entirely typeset by pdfTEX and ConTEXt in TXfonts.

All contributions are to be sent electronically to

bulletin@eatcs.org

and must be prepared in LATEX 2ε using the class beatcs.cls (a version of
the standard LATEX 2ε article class). All sources, including figures, and a
reference PDF version must be bundled in a ZIP file.
Pictures are accepted in EPS, JPG, PNG, TIFF, MOV or, preferably, in PDF.
Photographic reports from conferences must be arranged in ZIP files layed out
according to the format described at the Bulletin’s web site. Please, consult
http://www.eatcs.org/bulletin/howToSubmit.html.

We regret we are unfortunately not able to accept submissions in other for-
mats, or indeed submission not strictly adhering to the page and font layout
set out in beatcs.cls. We shall also not be able to include contributions not
typeset at camera-ready quality.

The details can be found at http://www.eatcs.org/bulletin, including
class files, their documentation, and guidelines to deal with things such as
pictures and overfull boxes. When in doubt, email bulletin@eatcs.org.

Deadlines for submissions of reports are January, May and September 15th,
respectively for the February, June and October issues. Editorial decisions
about submitted technical contributions will normally be made in 6/8 weeks.
Accepted papers will appear in print as soon as possible thereafter.

The Editor welcomes proposals for surveys, tutorials, and thematic issues of
the Bulletin dedicated to currently hot topics, as well as suggestions for new
regular sections.

The EATCS home page is http://www.eatcs.org

vii

Table of Contents

EATCS MATTERS
Letter from the President . 3
Letter from the Bulletin Editor . 11
Hartmut Ehrig (1944-2016)by R. Heckel, with
contributions by A. Corradini, U. Montanari, H.J. Kreowski,
F. Orejas, G. Rozenberg . 15
Helmut Veith (1971-2016)by T. Eiter, R. Zach 23
Helmut Veith (1971-2016) by R. Zach . 27
For Helmut Veith (1971-2016) "I have this idea"by
O. Lehmann . 29
David Stifler Johnson: A Tribute by Lance Fortnow . . . 33

EATCS COLUMNS

The Distributed Computing Column, by S. Schmid
Survey of Distributed Decision, by L. Feuilloley,
P. Fraigniaud . 41

The Education Column, by J. Hromkovic
Learn to Program? Program to Learn!, by M. Hauswirth 67

The Logic in Computer Science Column, by Y. Gurevich
Fundamentals of p-values: Introduction, by
Y. Gurevich, V. Vovk . 79

News and Conference Reports
Report on BCTCS 2016, by A. Trehan . 97
Report from the Japanese Chapter, by R. Uehara 111

Miscellaneous

EATCS Fellows' Advice to the Young Theoretical
Computer Scientist, by L. Aceto with contributions
by: M. Dezani-Ciancaglini, Y. Gurevich, D. Harel,
M. Henzinger, G. F. Italiano, S. Smolka, P. G. Spirakis,
W. Thomas . 117

Are you interested in theoretical computer
science? (How not???) I have some advice for you,
by M. Fellows . 127

Contributions by EATCS Award Recipients

Interview with Stephen Brookes and Peter W.
O'Hearn Recipients of the 2016 Godel Prize, by L. Aceto . 135

Interview with Rajeev Alur and David Dill 2016
Alonzo Church Award Recipients, by L. Aceto 147

EATCS LEAFLET . 155

EATCS Matters

E
A
T
C
S

The Bulletin of the EATCS

3

Dear colleagues,

I usually enjoy writing in all forms and I
might even be considered a compulsive
writer. However, for several reasons, this
time I am finding it difficult to do so.

On a personal note, this is my last letter
to you as president of the EATCS. At ICALP
2016 I will have served two terms at the
helm of our association and I have decided
not to run for a third term. I have
thoroughly enjoyed working for the
theoretical computer science community as a
member of the EATCS Council for over ten
years, and I have been truly honoured to
serve as the president of association since
July 2012, and to cooperate with the
members of the council and with Ioannis
Chatzigiannakis and Efi Chita at the EATCS
Secretary Office. I have also had a very
enjoyable and fruitful collaboration with
Kazuo Iwama, the editor in chief of the
Bulletin, under whose energetic leadership
our flagship publication has consistently
been of excellent quality. I have learned
much from all of them.

However, the increasing pressures of our
job are such that I feel that it is time
for me to step down. I have probably given
what I could to the EATCS, and our
association will benefit from an influx of
fresh blood and new ideas. The new
leadership of the EATCS (president and
vice-presidents) will be announced
officially at the General Assembly at ICALP
2016 in Rome. I have no doubt that its
members will make the EATCS more visible
and influential than I have done. I will
keep serving the EATCS as a loyal member

BEATCS no 119

4

and an interested observer.

At ICALP 2016, we will also complete the
process of changing the seat of the EATCS
from Antwerp to Brussels. After a very
long and sterling service, our treasurer
Dirk Janssens will also take leave from the
association. Dirk has been a stalwart of
the EATCS and he deserves our most sincere
thanks for all he has done over the years.
Following his example won’t be easy.
Fortunately, our colleague Jean-Francois
Raskin (Université Libre de Bruxelles) has
agreed to take over the job of treasurer of
the EATCS. On behalf of the EATCS, I thank
Dirk and Jean-Francois, and wish them all
the best for the future.

The recent, untimely passing away of
several members of our community also makes
the task of writing this letter difficult.
This issue of the Bulletin of the EATCS
features obituaries for Hartmut Ehrig,
David Stifler Johnson and Helmut Veith. In
addition, our good colleague and friend
Zoltán Ésik passed away suddenly on
Wednesday, 25 May, in the hotel room where
he was staying with his wife during a visit
to the research group led by my wife and me
at Reykjavik University. He had delivered
a survey talk at Reykjavik University on
the “Equational Logic of Fixed Point
Operations” on Tuesday, 24 May, and we were
making plans for the coming days and for
mutual visits over the next few months.
Obituaries for Zoltán will appear in the
October 2016 issue of the Bulletin.

We will remember these colleagues at ICALP
2016 and I encourage the members of the
theoretical computer science community to
honour their memory by studying their work
and disseminating it amongst their

The Bulletin of the EATCS

5

students. In 1918, the Italian poet
Giuseppe Ungaretti wrote the following very
short poem

Si sta come
d’autunno
sugli alberi
le foglie

which can be loosely translated as ”We are
like tree leaves in autumn”. I learned
that poem by heart like many other Italian
school kids. It is only much later in life
that one understands the true meaning of
those words. However, the reaction of our
community to the passing away of the
above-mentioned colleagues has made me
realize that the tree that hosted their
leaves has very deep roots and that we can
preserve those leaves for posterity.

Let’s go back to core EATCS business. At
this time of the year, the theoretical
computer science community is about to meet
at ICALP, the flagship conference of our
association. As you know, the 43rd ICALP
will take place in the period 12�15 July
2016 in Rome, Italy.
ICALP 2016 had the largest number of
submissions in history (515 papers).
Moreover, and most importantly, all tracks
received many submission of very high
quality. The PCs for the three tracks,
which were expertly led by Yuval Rabani
(Track A), Davide Sangiorgi (Track B) and
Michael Mitzenmacher (Track C), did an
amazing job in selecting an exciting
conference programme.
I am very grateful to Tiziana Calamoneri,
Irene Finocchi, Nicola Galesi, Daniele
Gorla and their team for the extraordinary
work they have done in organizing ICALP
2016.

BEATCS no 119

6

The programme of ICALP 2016 will highlight
research across many areas within
theoretical computer science. I invite you
to go to talks even outside your own
research field. In particular, I hope that
all participants will make a point of
attending all the invited talks, which will
be delivered by Subhash Khot, Marta Z.
Kwiatkowska, Xavier Leroy and Devavrat
Shah.

The best paper awards at ICALP 2016 will go
to the following articles: Amplifiers for
the Moran Process by Andreas Galanis,
Andreas Göbel, Leslie Ann Goldberg, John
Lapinskas and David Richerby (Track A), An
Almost Cubic Lower Bound for Depth Three
Arithmetic Circuits by Neeraj Kayal,
Chandan Saha and SÃľba stien Tavenas (Track
A), and Polynomial Time Corresponds to
Solutions of Polynomial Ordinary
Differential Equations of Polynomial Length
by Olivier Bournez, Daniel Graca and Amaury
Pouly (Track B).

The following papers will receive the best
student paper awards: Analysing Survey
Propagation Guided Decimation on Random
Formulas by Samuel Hetterich (Track A), and
An Optimal Dual Fault Tolerant Reachability
Oracle by Keerti Choudhary (Track C).

Congratulations to the authors of the
award-receiving papers!

As usual, a report on the conference will
be published in the October 2016 issue of
the Bulletin. I also hope that there will
be some coverage of the event on the blogs
devoted to theoretical computer science. I
will issue a call for guest bloggers on my
professional blog myself.

ICALP 2016 will be the first edition of the
conference whose proceedings will be

The Bulletin of the EATCS

7

available in open-access form in the LIPIcs
series. The EATCS Council decided to move
to open-access proceedings for its flagship
conference as a service to the scientific
community as a whole. I sincerely hope
that readers of this letter will support
this move, as well as our other activities,
by becoming a member of the EATCS. This
will allow us to use some of the financial
resources of the association to cover the
article processing charges for LIPIcs
articles. Those charges will be increasing
in the coming years, but will stay small
and will guarantee free access to the
archival version of the articles in the
ICALP proceedings to researchers all over
the world.

Apart from the invited and contributed
talks, ICALP 2016 will feature the
presentation of the EATCS Award 2016 to
Dexter Kozen, of the Gödel Prize 2016 to
Stephen Brookes and Peter O’Hearn, and of
the Presburger Award 2016 to Mark
Braverman. Moreover, during the
conference, we will honour the EATCS
Fellows class of 2016, who are �the late
Zoltán Ésik (University of Szeged, Hungary)
for “contributions to the fields of
automata and formal languages, iteration
theories, algebra and logic in computer
science, and in particular to their
connections. He has been able to apply
deep theorems of some area to problems of
other fields, yielding particularly short,
beautiful and mathematically concise
proofs.”

�David Harel (Weizmann Institute of
Science, Israel) for “fundamental
contributions to program verification,
database theory, and software engineering,

BEATCS no 119

8

as well as for exceptional merits as a
writer and teacher. The Statecharts model
has had profound impact on software and
systems engineering.”

�Giuseppe F. Italiano (University of Rome
Tor Vergata, Italy) for “fundamental
contributions to the design and analysis of
algorithms for solving theoretical and
applied problems in graphs and massive data
sets, and for his role in establishing the
field of algorithm engineering.”

�Kurt Mehlhorn (Max-Planck-Institut für
Informatik, Germany) for “his influential
contribution to the whole field of
algorithmics over the past decades. In
addition to key theoretical contributions,
he has brought basic research closer to
practice.”

�Scott A. Smolka (Stony Brook University,
USA) for “fundamental contributions to
process algebra, model checking,
probabilistic processes, runtime
verification, and more recently for the
successful application of most of these
theories to cardiac-cell modelling and
analysis.”

Last, but not least, the EATCS
Distinguished Dissertation Award Committee
2016 has selected the following three
theses for the EATCS Distinguished
Dissertation Award for 2016:

�Radu Curticapean, “The Simple, Little and
Slow Things Count: On Parameterized
Counting Complexity”, �Heng Guo,
“Complexity Classification of Exact and
Approximate Counting Problems”,

�Georg Zetzsche, “Monoids as storage
mechanisms”.

The Bulletin of the EATCS

9

On behalf of the EATCS, I heartily thank
the members of the award, dissertation and
fellow committees for their work in the
selection of this stellar set of award
recipients and fellows. It will be a great
honour to celebrate the work of these
colleagues during ICALP 2016.

Even though ICALP 2016 has not taken place
yet, we are already busy preparing future
editions of the conference. As you may
know already, ICALP 2017 will be held in
Warsaw, Poland, in the period 10�14 July
2017. The conference chairs will be
Mikolaj Bojanczyk and Piotr Sankowski. The
PC chairs for the conference will be Piotr
Indyk (MIT, USA) for Track A, Anca Muscholl
(LaBRI and Université Bordeaux, France) for
Track B and Fabian Kuhn (University of
Freiburg, Germany) for Track C. The
preliminary call for papers for the
conference will be available in Rome.
Moreover, during the general assembly at
ICALP 2016, we will examine a bid to host
ICALP 2018 in Prague, Czech Republic.

The EATCS continues to be active on
increasingly many fronts. We have recently
stipulated a new reciprocity agreement with
the ACM Special Interest Group on
Electronic Commerce (ACM SIGecom). We have
also announced that the 2016 Alonzo Church
Award for Outstanding Contributions to
Logic and Computation will be given to
Rajeev Alur and David Dill for their
invention of timed automata. The Alonzo
Church Award is a new major prize in
cooperation with ACM Special Interest Group
on Logic and Computation, the European
Association for Computer Science Logic and
the Kurt Gödel Society.

I interviewed the recipients of the 2016

BEATCS no 119

10

Gödel Prize and of the 2016 Alonzo Church
Award for the Bulletin of the EATCS. You
can read the interviews in this issue of
the Bulletin and I hope that you’ll enjoy
them as much as I did. I feel that they
shed light on the development of the work
that led to those awards and offer many
general lessons about research from which
we can all learn something new.
As usual, let me remind you that, at least
until the middle of July this year, you are
most welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the
theoretical-computer-science community at
president@eatcs.org.
I look forward to seeing many of you in
Rome for ICALP 2016 and to discussing ways
of improving the impact of the EATCS within
the theoretical-computer-science community
at the general assembly.

Luca Aceto, Reykjavik, Iceland
June 2016

11

Dear Reader,

Kyoto (and many other institutes in Japan)
has a forced retirement system by age and
it came to me this March. Fortunately I
got a small position at RIMS in the same
Kyoto University and am now spending almost
the same daily life as before (well,
virtually no classes or faculty
meetings,... a bit lacking tensions). So
I had a lot of things to do in February and
March, mostly paper works.

Among others, I had to prepare a bunch of
documents for my pension, which does not
come to me automatically. Obviously it was
a good chance to know what our pension
system is like and especially what amount
of money would be coming. Then it turned
out that the description of those things is
really complicated with several formulas.
It is a well-known fact that only a very
small group of people, mainly bureaucrats,
do understand it and they do not want other
people to do so. The reason is clear; they
are afraid that many complaints are coming
once people understand it.

However, after a couple of weeks’ study, I
finally ended up with the fact that our
pension has a couple of different sources
but the amount of money coming from its
main part, which is also the hardest part
to understand, is somewhat proportional to
the income he/she has gotten in the whole
carrier. This is surprisingly simple but
the description never mentions that. Of
course you can figure out the exact amount
after understanding several definitions of
terms and complex formulas, but its (pretty
accurate) approximation is simple and

BEATCS no 119

12

natural. But they still don’t want to make
it clear.

Then I noticed that exactly the same thing
can happen when we write papers. I am sure
there are many (but not all) cases that the
basic idea is quite simple although the
exact description should be complicated.
Now there are several different types of
authors. Some of them make it (the idea)
clear but still succeed in claiming the
result is nontrivial. Some of them
deliberately hide it because they are
afraid that its revealing would destroy the
importance of the result. Some of them
even do not know there is a simple idea
behind the (rather complicated) result,
which is sometimes indicated by reviewers.
Our pension system is exactly the second
type.

This issue of BEATCS has five obituaries
including the one for David Johnson. I was
a main organizer of SODA 2012 in Kyoto and
I remember a lot of communications with
David who everyone knows is a single main
figure of the conference. He looked ok at
that time, but soon after that I heard he
was having a serious health problem.

I enjoyed reading advises from EATCS
fellows. I also read similar articles here
and there and even have written ones by
myself. In such occasions, it is always
hard, at least as far as I am concerned, to
understand how the whole environments are
different between now and when I was young
(usually these kind of articles target
young people). I can write how I should
have done when I was young but I am not
sure if this is useful at all for young
guys of the current time.

The Bulletin of the EATCS

13

Summer is approaching. Its image is
different from place to place, but to me
who lives in Kyoto it is definitely not
very welcome, just heat and humid. I hope
it IS welcome with you.

Kazuo Iwama, Kyoto
June 2016

BEATCS no 119

14

15

Hartmut Ehrig (1944–2016)

Reiko Heckel (Leicester, UK)
with contributions by Andrea Corradini, Ugo Montanari,

Hans-Jörg Kreowski, Fernando Orejas and Grzegorz Rozenberg

Hartmut Ehrig passed away on March 17, 2016 at the age of 71. His colleagues
and friends are mourning the loss of a most creative scientist and leader who made
pioneering contributions to areas of theoretical computer science such as Cate-
gorical Automata Theory, Graph Transformations, and Algebraic Specifications,
inspired generations of researchers and helped to build lasting communities.

Harmut was born in Angermünde (Germany) in 1944 and spent his academic
career at the Technische Universität Berlin, where he studied Mathematics, Physics
and Theoretical Informatics 1963 – 1969, worked as research assistant at the
Mathematics Department 1970 – 1972, and received his PhD in 1971. In 1972
he was appointed Assistant Professor at the Informatics Department and received

BEATCS no 119

16

his Habilitation two years later. In that same year he was appointed Associate
Professor of Theoretical Informatics. Hartmut became full professor at the TU
Berlin in 1985 and held this position until he retired in 2010.

Early in his scientific career Hartmut developed a Unifying Theory of Au-
tomata, a categorical approach preceding computational models popular today
based on monoidal categories and coalgebras. The categorical approach to se-
mantics was a consistent theme throughout his work. In 1973 he applied it to the
problem of formalising the notion of graph transformation, extending the defini-
tion of rewriting from formal (string) grammars to graphs. This led to the famous
double-pushout (DPO) approach, which gave us one of the most recognisable di-
agrams in the application of category theory to computer science.

L

m

��
(PO)

K

(PO)

loo r //

��

R

m∗

��
G Dl∗oo r∗ // H

This innovation, published in the 1973 paper Graph-Grammars: An Algebraic
Approach with Michael Pfender and Hans-Jürgen Schneider, was instrumental
in creating an entire discipline, variously referred to as graph grammars, graph
rewriting or graph transformation, with a series of workshops and conferences
that he helped to initiate, including the International Workshops on Graph Gram-
mars and their Application to Computer Science with Volker Claus and Grzegorz
Rozenberg starting in 1978 and the International Conferences on Graph Transfor-
mation (ICGT) since 2002. He was the first chair of the ICGT steering committee
from 2000 to 2008.

Hartmut not only created and led the graph transformation community but
made significant contributions to funding its operation through two European
projects on Computing by Graph Transformation I and II. His monographs on
Fundamentals of Algebraic Graph Transformation and most recently on Graph
and Model Transformation as well as the Handbooks of Graph Grammars and
Computing by Graph Transformation he helped create and edit remain part the
core literature of the discipline.

Another area where Hartmut applied his style of categorical semantics are
Algebraic Specifications. He developed the first compositional semantics for pa-
rameterised algebraic specifications based on amalgamation, a construction us-
ing a pushout in the category of generalised algebras (over arbitrary signatures).
His monographs Fundamentals of Algebraic Specification 1 and 2, and Alge-
braic Specification Techniques and Tools for Software Development: The Act
Approach became standard references and were widely adopted for teaching.

Hartmut started the series of international conferences on Theory and Practice
of Software Development (TAPSOFT) in 1985 and helped its transformation into

The Bulletin of the EATCS

17

ETAPS from 1998 onwards, today one of the most successful Computer Science
conferences in Europe. Hartmut served as vice president of the European Asso-
ciation of Theoretical Computer Science (EATCS) from 1997 to 2002 and was
vice president of the European Association of Software Science and Technology
(EASST) since 2000.

Hartmut was amazingly productive. In addition to the editing and co-editing
of more than 20 proceedings and handbooks, he authored and co-authored eight
books and more than 400 papers in journals, proceedings, handbooks and other
collective volumes, cooperating with more than 160 coauthors.

Hartmut supervised well over 50 PhD students, many now in senior positions
themselves. When I came to Berlin in 1991 for my 3rd year of studies I was
attracted by his genuine passion for science, which showed of course in Hartmut’s
own teaching but had also infected his entire group. After following a course on
algebraic specifications and another one on graph grammars I was hooked and
spent most of the rest of my studies there until a position in a research project
was available and I became a PhD student under Hartmut’s supervision. The
following years were among the most intellectually inspiring and formative of my
life. I not only learned from Hartmut the tools of the trade but also his approach
to supervision. Hartmut thoroughly enjoyed working with students, hardly ever
stopped discussing science, including over lunch and in the pub, and so gave us the
impression that our work was, at least for now, the most important in the world. I
have especially fond memories of Summer evenings in the Schleusenkrug (a pub
by the canal locks in the Tiergarten), the group often including visitors, drawing
diagrams on napkins over beer and Currywurst.

Hartmut’s collegiality, integrity and genuine interest created a legacy, not only
of his scientific work but also of his personal example and approach to research.
It will remain with us, who were lucky enough to know and work with him.

Hartmut Ehrig

Ugo Montanari and Andrea Corradini
University of Pisa, Italy

As friends, collaborators and coauthors of Hartmut Ehrig we were heavily
shocked by his departure.

One of the areas of interest for our scientific work is graph transformation.
Hartmut has been the main originator and architect of this area. The idea was to
extend to general structures, collectively called graphs, the constructions and the
results already known for string, term and multiset rewriting. The deep knowledge
and intuition Hartmut had in category theory guided him in developing, in 1973,

BEATCS no 119

18

together with Michael Pfender and Hans-Jürgen Schneider, the Double Push Out
(DPO) construction. It works conveniently in several categories besides Graph
and from the very beginning Hartmut started, with collaborators, the quest for the
most general category where the interesting properties of DPO do hold, a quest
eventually fulfilled recently by adhesive categories. To define a good notion of
graph grammar was an open problem at the time. Ugo Montanari also contributed
to it at some extent, together with John Pfaltz and Azriel Rosenfeld. When the
DPO paper appeared, Azriel, a mathematician and a pioneer in picture processing
and recognition, told Ugo he was definitely impressed by the clever and general
construction of DPO, which was disclosing a new area of research.

Another milestone Hartmut contributed to the theory of graph transformation
together with Hans-Jörg Kreowski was on concurrent rewriting. In 1978, when
concurrency theory was in its infancy even for Petri nets, the notion of shift equiv-
alence was a breakthrough. The extension of Petri Net theory (on multiset, or
marking, rewriting) to graph transformation was developed later, mainly by Paolo
Baldan, again with important contributions by Hartmut.

Another important result worth mentioning is on borrowed contexts, in col-
laboration with Barbara König. For a long time the DPO construction has been
missing a notion of observation associated to a transformation. Observations are
essential for defining abstract compositional semantics of processes. Following an
approach by James Leifer and Robin Milner, Hartmut and Barbara introduced a
categorical construction able to associate to a graph transformation an observation
defined in terms of the minimal missing part necessary to apply a DPO.

Direct scientific work was by no means the only contribution Hartmut offered
to our community. He was the main actor in coordinating the conference and
workshop activity on graph transformation and in promoting EU working groups
and projects in the area: COMPUGRAPH I (1989-1992), COMPUGRAPH II
(1992-1996), GETGRATS (1997-2000) and APPLIGRAPH (1997-2000). Sup-
port for shared activities did allow for several visiting periods between partners.
In particular, the connection between Berlin and Pisa was especially active and
productive: in the period 1990-2000 three researchers from Pisa visited Berlin
and three vice versa, for periods of about a year each on the average.

Among Hartmut’s merits for the general computer science community, we
want to mention explicitly the effort spent by Hartmut to organize the first TAP-
SOFT conference in Berlin, 1985. He recognised the need to connect theory with
practice in the area of software development. Together with Maurice Nivat, the
founder of EATCS and ICALP, Hartmut designed an articulated, flexible confer-
ence structure which turned out quite successful. The second TAPSOFT confer-
ence was in Pisa, 1987. Later, TAPSOFT evolved into ETAPS, presently one of
the largest European conference addressing this mix of theory and practice.

We want to conclude these few words by remembering our frequent visits to

The Bulletin of the EATCS

19

Berlin while collaborating with Hartmut and his group, for shorter and longer
stays. Hartmut has always made us feel at home and, a proud host, was eager for
us to enjoy the city, with all its contradictions.

Now most former students of Hartmut have left Berlin and have continued his
work contributing to the development of several research centers in Germany and
abroad. We will never forget the exceptional personal and scientific heritage of
Hartmut Ehrig.

My ‘giant’ friend Hartmut

Hans-Jörg Kreowski
University of Bremen, Germany

Hartmut’s death is very sad news for me as for many of his colleagues and
friends. The graph transformation community and the algebraic specification
community lost one of their pioneers, a leading, most inspiring and creative re-
searcher, and guiding spirit to many of us.

As a student back in 1971, I attended Hartmut’s seminar on categorical au-
tomata theory. Soon afterwards he introduced me to the fascinating world of graph
transformation and supervised my PhD thesis. This was the beginning of a long,
intense and fruitful period of cooperation and friendship in which we sat together
for hundreds of hours discussing and working on categorical automata theory,
graph transformation and algebraic specification. I owe a lot to him.

Hartmut spent all his academic career at the Technische Universität Berlin only
interrupted by longer research stays at Amherst, Yorktown Heights, Los Angeles,
Leiden, Barcelona, Rome and Pisa. Besides teaching and research, he was also
deeply involved in university affairs serving repeatedly as department chair and
leading the Institute for Software Engineering and Theoretical Computer Science
for 32 years. I remember well the long hours in the 1970s sitting together with
Hartmut and discussing the pressing issues of departmental politics (and there
were many thrilling and conflict-laden topics to discuss at that time).

Hartmut was a most productive editor and co-editor, author and co-author. It
was far from easy to keep pace with him. Not only the sheer amount of printed
outcome is striking, but also the fact that he was the driving force behind most of
his publications. If he looked into a matter, then he did not stop before he under-
stood it in depth. In this process, he often came up with innovative formulations,
views and approaches. He was a profound thinker who worked hard to dissemi-
nate his ideas. He was a great communicator attending a good many conferences,
visiting numerous research groups all over the world and inviting a great number
of famous and promising scientists to Berlin.

BEATCS no 119

20

Hartmut was also a dedicated teacher who prepared many courses in Theoret-
ical Computer Science and Mathematics for Computer Scientists including teach-
ing materials as evidenced by his text book Mathematisch-strukturelle Grundla-
gen der Informatik and a wealth of unpublished lecture notes. At his university,
he belonged to the minority of professors who experimented regularly with new
principles of teaching. He invested much time and effort in the supervision of his
students. In particular his over 50 PhD students always found him ready to advise
and collaborate.

Hartmut largely personifies the area of graph transformation. But appreciating
his achievements and the services rendered to graph transformation, one should
not forget that he played a similar role in algebraic specification and contributed
significantly also to the areas of automata theory, Petri net theory and formal and
visual modeling. Beeing one of the most influential scientists in Computer Sci-
ence for some decades, he was a nice, friendly, generous, reliable, and faithful
colleague and friend. I have always admired his can-do attitude.

There is a very old metaphor going back to the twelfth century that we can
see further making progress in science because we can stand on the shoulders
of giants. Hartmut was, is and will be such a giant for our scientific community.
What better way to honour him and his work than to follow his footsteps and aspire
to achieve his level of service and dedication. I mourn for my ‘giant’ friend.

Hartmut in Barcelona

Fernando Orejas
UPC, Barcelona, Spain

In July 1988 Hartmut visited Barcelona for three weeks, because he was inter-
ested in working with us on our approach to behavioral algebraic specifications,
developed by Pilar Nivela in her thesis. I had met Hartmut six years before at
ICALP 82 in Aarhus, but I knew his work from some years before. My view of
algebraic specification was very close to his. Actually, I had done some work
on the composition of implementations, based on his notion of algebraic imple-
mentation. This visit was part of his summer vacation. While we were working in
Barcelona, his family was somewhere in the Costa Brava (at some point, he joined
his family for a few days and then returned to Barcelona).

I remember that, for me, this visit was a kind of nightmare, but a very nice
nightmare that we both enjoyed very much. From the scientific viewpoint we
did some interesting work, but we conjectured a main result that we found was
false by the end of his stay. In addition, during his visit, work was very stressing
for me. At the time, I had some other work commitments that I had to fulfill in

The Bulletin of the EATCS

21

parallel, while he was on vacation with no other duties. As a consequence, our
day scheduling was roughly as follows. I was waking up early (around 7 AM) and
working in my other duties until 10. At that time he was showing up in my office,
and we were working until 1 PM, when we were going for lunch. After lunch, he
was going to the residence where he was staying to sleep a siesta. Meanwhile, I
was working on my other duties, until he would show up again. Then, we were
working until 7 or 8 PM, when we were going for dinner to some nice restaurant
and, afterwards, to some nice bar for a drink, which meant going to sleep typically
later than 2 AM. I remember that one night (fortunately it was Friday, so we were
not working the following day), we were a group of people having an excellent
time in a beautiful open air bar, and it was around 5 AM. Since I was quite tired I
decided to suggest to leave and to go to sleep. But instead of saying it explicitly,
which is a bit rude, I did it in a polite way. What I said was something like Our
glasses are empty so, either we leave, or we ask for new drinks. His answer was
Oh! I’m enjoying this place. So, we asked for new drinks and we left the bar
around 6.

We also had some problems in the social activities of his visit. I especially
remember his first day in Barcelona. We had made a reservation on a very nice
seafood restaurant, but too late we discovered that he did not like seafood (or
that’s what he claimed) and that in this restaurant there were no meat dishes. At
the end, he said that he would have some salad as first, dish and paella as main
dish, although he also claimed that he did not like paella, because years before
he had a terrible paella in some restaurant (probably a tourist trap). As for the
rest of us, we decided to have some very nice tapas to share, first dish and then a
couple of different rice dishes as mains. When all these tapas arrived to the table,
he looked at them and to his boring salad and offered to us to share his salad, if
he was allowed to share our tapas. At the end, he had enjoyed the seafood and the
paella. Some time later he told me that he still did not like seafood, unless I would
assure him that it was good. Actually, years later, in another visit, he even had a
black paella, because I told him that he would like it, which he did.

Despite these initial “problems”, since we both enjoyed working together, we
started a long and fruitful collaboration and a very good friendship. Every two
years, more or less, he was coming to Barcelona and in the complementary years
I was visiting Berlin. According to DBLP, we coauthored 58 papers. Actually, he
is my main coauthor and I am his main coauthor, with respect to the number of pa-
pers coauthored. Initially, we started working in algebraic specification, but later
he introduced me to graph and model transformation and I introduced him to logic
programming and some logical techniques for automated deduction. Anyhow, I
think that I learned much more from him than he learned from me.

In the last three or four years, regrettably, our collaboration ended when Hart-
mut was unable to come to Barcelona because of problems with his mobility and

BEATCS no 119

22

new duties at my university made it difficult to make time for a stay in Berlin.
Nevertheless, I was planning a visit when I learned the sad news that I had lost a
very good friend.

Remembering Hartmut

Grzegorz Rozenberg
Leiden University, The Netherlands

University of Colorado at Boulder, USA

We were close (also family) friends for over 40 years. We did joint research,
cooperated on editing books (proceedings, handbook, ...), and on establishing a fo-
rum for researchers on graph transformation (first a workshop which then evolved
into a conference). I also worked closely with Hartmut on producing some of his
books.

We visited each other quite often (especially in the 1970s through the 1990s).
I still remember staying in his apartment in the 1970s from where I had a bird’s
eye view of the Berlin wall.

Hartmut was a passionate scientist and a 100% reliable partner. Whatever
project we were working on he would be a real motor behind it - it was simply
not possible to stay behind when working with Hartmut. Also, whatever part of
a common project he took over, I knew in advance that it would be implemented
ahead of the agreed deadline.

I formed important “friendship links” through Hartmut. Once he invited me to
Berlin with an explicit request to work with his very talented Ph.D. student Hans-
Jörg Kreowski. This stay became the beginning of my long scientific collaboration
and personal (family) friendship with Hans-Jörg.

Hartmut enjoyed very much my magic shows, especially the illusions in-
volving unexpected/amazing coincidences. The last unexpected coincidence took
place on March 17, 2016 when I wrote an email to Hartmut about his last book.
This was the day that he passed away (nobody except for his close family knew
about his illness).

I lost a dear friend. Scientific communities thrive because they include in-
dividuals such as Hartmut. We are all indebted to him and he will be warmly
remembered by many.

23

Helmut Veith (1971–2016)

Thomas Eiter
TU Wien

thomas.eiter@tuwien.ac.at

Richard Zach
University of Calgary
rzach@ucalgary.ca

TU Wien and the Faculty of Informatics mourn the loss of Prof. Helmut Veith,
who passed away on March 12, 2016 at the age of 45. He fell into a coma due
to unforeseen complications following routine surgery; he died without regaining
consciousness.

Education and Career

Helmut Veith was born on February 5, 1971. After graduating from high school
at the BG/BRG Tulln in 1989, Veith studied computational logic at the TU Wien
and graduated in 1994. He received his doctorate in computer science in 1998,
the promotion ceremony was carried out “sub auspiciis praesidentis” by the pres-
ident of Austria, a rare honor indicating his immaculate academic record. Helmut
Veith began his scientific career at the Institute of Information Systems, where he
held a position as assistant researcher (Universitätsassistent) in the Databases and
Expert Systems Group from 1995 onward. In 2001, he received the Habilitation,
the right to teach at the university level, for the field of applied and theoretical
computer science. Shortly thereafter, Veith accepted a position as associate pro-
fessor (Professor C3) at the Technical University of Munich in 2003, which he
held until 2007. From 2008 to 2009, he began building a large research group
at the Technical University of Darmstadt, were he was full professor (Professor
W3). He returned to the TU Wien in 2010, and was the inaugural holder of the
professorial chair in computer aided verification.

Helmut Veith became interested in computer aided verification in the late
1990s after taking a guest lecture course in model checking given by Orna Grum-
berg. His interests expanded during a post-doctoral visit at Carnegie Mellon Uni-
versity in 1999/2000, supervised by Turing Award-winner Edmund M. Clarke,
and funded by a Max Kade Fellowship. Prof. Veith’s subsequent work focussed
on this area. He established a sustained and successful research collaboration with
Prof. Clarke, and was named Adjunct Professor at Carnegie Mellon in 2005.

BEATCS no 119

24

Awards and Memberships

Helmut Veith was a leading researcher in the area of computer-aided verification,
to which he made numerous contributions. He worked in particular on model
checking for software and hardware, on abstraction tools, parametric questions in
model checking, analysis and testing of computer programs, and in this context
also on temporal logic. Two examples can serve as illustrations. The first is
a path-breaking, outstanding article on the verification of systems using refined
abstraction; it is universally known in the field as the “counterexample-guided
abstraction and refinement (CEGAR)” method and has found applications in many
areas outside as well. This work received the CAV Award 2015, an award that
honours contributions of fundamental importance to the field of computer aided
verification. The second is a paper on the verification of modular software, which
received the ACM SIGSOFT Distinguished Paper Award in 2004.

Helmut Veith’s research interests, however, were not limited to verification.
His wider interests included computer security and embedded systems, mathemat-
ical logic (especially fuzzy logics), the theory of databases, finite model theory,
and complexity theory. He made significant contributions to each of these fields.
He published his results in numerous papers in the most prestigious journals and
conference proceedings. Due to his interdisciplinary approach to research, driven
by curiosity and applications, Helmut Veith was well-known and admired in sev-
eral research communities. This is reflected in his membership in many program
and steering committees. In his main field of research, Helmut Veith was co-editor
of the Handbook of Model Checking, the last volume of which is scheduled to ap-
pear this year, and co-chair of the CAV conference program committee in 2013 as
well as of the FMCAD conference this year.

Contributions to the TU Wien and Science in Austria

Following his return to the TU wien, Helmut Veith considered it his challenge to
integrate and foster the significant existing potential in areas related to logic, such
as databases, artificial intelligence, knowledge-based systems, automated deduc-
tion, with computer-aided verification. His aim was to bring these areas together
under the banner of logic in computer science, and to make Vienna and Austria an
international center for logic and verification. In this regard, his efforts to create
an Austrian research network on “Rigorous Systems Engineering (RiSE)” have to
be highlighted; the network has been funded by the Austrian Science Fund since
2011, and he served as its vice chair. At the TU Wien he co-initiated a doctoral
college in logic in computer science. After its successful completion, it trans-
formed into a doctoral program in “logical methods in computer science”, also

The Bulletin of the EATCS

25

funded by the Austrian Science Fund beginning in 2014; Veith served as its di-
rector. This doctoral program made a substantial contribution to a restructuring
of graduate training in the Faculty of Informatics. Other projects suggested or
initiated by Veith have been the Vienna Center of Logic and Algorithms (VCLA),
a platform for fostering national and international research and collaboration in
the area of logic and algorithms, and the Vienna Summer of Logic, the largest
event in the history of logic. This unprecedented conference united in one place a
large number of the most important annual meetings in the areas of mathematical
logic, logic in computer science, and logic in artificial intelligence, which enabled
a broad exchange of research results. It was held in July 2014 at the TU Wien. The
event, which was shaped in large part by Veith as its co-chair, was an enormous
success and was received enthusiastically by the research community.

Helmut Veith not only excelled in his research and organisational projects. He
was unfailing also in his dedication to the Faculty and its interests. He held a cen-
tral role in the development and organization of the Faculty, where he participated
in numerous working groups and committees. His inexhaustible creativity and
his imagination showed new avenues. He proved this already as an undergradu-
ate student through his development of the studium irregulare in “computational
logic”.

Helmut Veith was an outstanding proponent of foundational research, but he
also understood the importance of innovation and application. He was always
open to cooperation with other disciplines. Currently an interdisciplinary project
with the Faculty of Architecture, which Veith helped bring about, and which is
funded by the Austrian Science Fund through the PEEK program, serves as further
evidence of the wide horizon of his interdisciplinary thinking. He was going to
contribute his own expertise in information design to this project.

Nurturing New Talent
Teaching, learning, and nurturing new academic talent were a particular and im-
portant concern for Veith. He contributed to the design of masters and doctoral
programs, and supervised numerous masters theses and dissertations, many of
which received awards. He also supervised a number of post-doctoral researchers
and supported their promising careers. He is appreciated especially by the numer-
ous young scientists who received research awards thanks in part to his dedicated
mentorship. Helmut Veith was researcher and teacher with heart and soul. With
his death, the Faculty of Informatics and the TU Wien has lost one of its most
outstanding and innovative leaders. The Austrian science community, and indeed
the international computer science community, has lost a highly respected and in-
fluential member. He was also a well-rounded academic with interests, e.g., in

BEATCS no 119

26

literature and performing arts.
Helmut Veith was a cooperative and open colleague and a very good friend

to us all. His death leaves a void that will never be filled; we will miss him. It
is incomprehensible that he would be taken from us in the prime of his life. He
already created so many things, but there were also so many hopes. His work and
legacy will be our mission.

The Faculty of Informatics at TU Wien will forever honor his memory. Our
thoughts are with his family during this difficult time.

27

Helmut Veith (1971–2016)

Richard Zach
University of Calgary
rzach@ucalgary.ca

My friend and colleague Helmut Veith1 died on Saturday, 12 March 2016.
His death is a great and shocking loss to his family and friends, and the logic
community, especially in Austria.

I’ve known Helmut since we were undergraduates in computer science at Vi-
enna Technical University in the early 1990s. We shared a passion for theoretical
topics in computer science, a love of Robert Musil; we took many courses to-
gether. In fact, we liked logic so much that together we created a specialized
course of study (a studium irregulare) in computational logic. At the time this
still required approval by the federal ministry of science and research, and it was a
lot of work, but we got it approved. It has since morphed into a standard stream in
the computer science curriculum at the TU Vienna, and more recently a doctoral
program, all in no small part due to Helmut’s tireless organizational work. I was
a year ahead of him, but he was the better student. He literally had straight As
throughout high school and university. In Austria, that earns you a doctorate sub
auspiciis praesidentis, and the president of the republic himself hands you your
diploma. His Diplom was on finite model theory; his dissertation on the com-
plexity of database query languages (supervised by Georg Gottlob). Helmut had
a stellar career: appointments at TU Munich, TU Darmstadt (two of the centers of
computer science in Germany), and finally a full professorship at our alma mater
in 2010; add to that an adjunct professorship at Carnegie Mellon. Not only was
he the better student, he had the better sense to stay in computer science, and to
do something useful with logic. He was one of the leading experts in computer
aided verification, especially model checking, with over 120 papers to his name.
After his return to Vienna, he was instrumental in getting the Vienna Center for
Logic and Algorithms2 off the ground, led the organization of the Vienna Sum-
mer of Logic3, and helmed the Austrian doctoral program on logical methods in
computer science4. Helmut wasn’t just an outstanding researcher, he was also

1http://forsyte.at/people/veith/
2http://www.vcla.at/
3http://www.vsl2014.at/
4http://logic-cs.at/phd/

BEATCS no 119

28

passionate about improving undergraduate education in logic and computer sci-
ence (he served on the ASL’s Logic Education committee, and we co-organized
a special session at the 2014 Logic Colloquium), about diversity in the field, and
about science policy.

We need more people like him. I miss him.

29

For Helmut Veith (1971–2016)
“I have this idea”

Oliver Lehmann
IST Austria

oliver.lehmann@ist.ac.at

My friend Helmut Veith passed away on Saturday, 12 March 2016, from the
effects of a pulmonary embolism after an operation on his leg. He was 45 years
old. Helmut is survived by his wife Anna, their son Nikita, and his mother Herta.
Our thoughts are with them. I leave it to others to honour his pioneering achieve-
ments in the field of computer science. With this text I intend to recognize his
outstanding abilities as science communicator.

It sounds trivial to state that Helmut Veith led a binary life. As a computer sci-
entist Helmut would deal with decisions described by yes and no, plus and minus,
1 and 0. But If I say binary and mention Helmut I add the attribute of quality to this
binary decision-making. Helmut was a man of a distinct “Möglichkeitssinn” in the
sense of Robert Musil, an author—among many others—he loved as Richard Zach
reminded us in his befitting obituary1.

Options, chances, possibilities do not describe properly what fascinated Hel-
mut when faced with a problem. It was the potential the problem offered and
which he detected with his “Möglichkeitssinn” which Musil explains as follows:
“A possible experience or truth is not the same as an actual experience or truth
minus its reality value, but has—according to its partisans, at least—something
quite divine about it, a fire, a soaring, a readiness to build and a conscious utopi-
anism that does not shrink from reality but sees it as a project, something yet to
be invented”2. For Helmut, the answer to a riddle was wasted (or at least bland) if
the answer did not enable new paths of thinking, new fields of research, new ways
of communication. A solution was not the simple confirmation of feasibility but a
proposal for improvement.

His peers have described Helmut’s merits as a computer scientist3 in an ap-

1Note of the editor: Richard Zach’s obituary is also published in this issue and is available as a
blog post at http://richardzach.org/2016/03/13/helmut-veith-1971-2016/.

2Musil, R. (1996) “The Man Without Qualities”, translated by Sophie Williams and Burton
Pike, Vintage Books, p. 11

3https://www.tuwien.ac.at/de/aktuelles/news_detail/article/10002/

BEATCS no 119

30

propriate manner. I will focus on his interest in communicating his science to all
kinds of public. His unique quality to strive for improvement contributed to Hel-
mut’s decision to wade into the sphere of communication—including the option
of failure.

Let me illustrate this with our first collaboration: obviously, just putting out
a press release on the establishment of a network bringing together all Austrian
research groups involved in Rigorous System Engineering was not enough for
him. It had to be more like convincing the Austrian public that Turing Award
winner Ed Clarke who had travelled to Austria for the kick-off meeting of the
new platform was headline stuff. For the press conference with Clarke in March
2011 not only the president of the Technical University of Vienna was convinced
to participate but also the federal science minister. A trendy location with a good
selection of food and wines was chosen and the time set in such manner that the
journalists could use the press conference as their first watering hole after that
day’s deadline. The evening nevertheless ended in a disaster. In short: Ed Clarke
and Rigorous System Engineering could not compete with Fukushima that had
blown its fuses and the headlines twelve hours before.

The reason why this first joint attempt in communication did not fail was a
media workshop a couple of months before the press conference. Helmut had first
supported and then pushed (including supplying his own coffee machine for the
coffee break, if I remember correctly) the, at least for Austria, new idea of this
workshop. At this workshop in 2010 at the TU Wien he—and other scientists he
had led by example—offered a carefully selected group of journalists the most
precious commodity they had available: time and attention. The effort paid off.
In spite of the Fukushima disaster, Rigorous System Engineering made it into the
editorial offices and continues to do so.

It must have been this experience that science no matter how complex can be
communicated if the right components were sensibly combined that drove him to
continue with this venture: “Du, ich hab da eine Idee” (“Listen, I have this idea”)
would be his usual opening line, followed after the explanation by a “What do
you think?” Like a bug, or rather like a spell, that enchanted him and inspired
others he conveyed his vision usually already focused onto a target. The Vienna
Summer of Logic 20144 started with something along these lines. Again, this
event has been praised rightly by Helmut’s peers for its sheer numbers and the
fact that it brought the diversity of logic and its conferences into one event. From
the many components let me just pick the most significant for success in terms of
communicating science:

• the comprehension that in a visual world the choice of a logo and of key
visuals is as important as any written content;

4http://vsl2014.at/

The Bulletin of the EATCS

31

• the requirement of extensive PR activities based on a concise strategy;

• the necessity that if the public won’t come to logic, logic must go public;

• the insight that with promoting a specific field of science we also commu-
nicate science as such.

Some hyperbolic ideas worked, like convincing the editors of Austria’s leading
current affairs publication profil not only to produce an extensive report on the
“most important field of science in the world” (what else?) but actually to put 21
logicians working in Austria onto its cover. Some other hyperbolic ideas didn’t,
like convincing the local district assembly at very short notice to name a street
after Kurt Gödel. By the way, as an act of acknowledgement of Helmut’s achieve-
ments this should be rectified in due course.

Maybe the Logic Lounge5 summarized Helmut’s intentions in the best man-
ner: a meeting place for friends of logic in the very public of a trendy club in
the centre of Vienna offering “insights into the millennium old discipline of logic,
celebrating the antique concept of the philosophical symposium (from the Greek
word συμπίνειν (sympinein, ‘to drink together’))” as we wrote on the website,
hosted not by an expert but an interested person, most likely a journalist able to
bridge the gap between the scholar and the public. The subjects ranged from
the history of logic at Vienna universities in the 1980s presented by Georg Gott-
lob with surprise appearances of veterans like media artist Peter Weibel to Chris-
tos Papadimitriou on his graphic novel and NYT bestseller “Logicomix”, Moshe
Vardi on the ethics of AI, Richard Zach on GödelTMs incompleteness theorems,
Byron Cook on the logic of symbols and, finally, Ruzica Piskac, Magdalena Ortiz
and Irene Schreier Scott on female logic. It is fair to assume that science com-
munication in Austria cannot go behind this conference and its events in terms of
intellectual capacity, diversity, accessibility and cultural impact.

I am skipping numerous other ideas in different degrees of realization like re-
writing first the textbooks and then the curriculum for high school students after
examining the teaching material in maths with which his son had been supplied
or the support of developing “Informatik Austria”, again a network of research
groups in computer science, for which Helmut generously sacrificed his time and
creativity. And Helmut was equally generous when it came to support ideas of
others. Of course, his Vienna Center of Logic and Algorithms participated in
the Vienna Ball of Sciences6 from the very first moment onwards, with Helmut
explaining the impact of probability and game theory at the roulette table. The
idea of the ball was a setting proper to his liking: think big, think better, and do
not refrain from challenging common expectations or attitudes.

5http://vsl2014.at/public-events/index.html
6http://www.wissenschaftsball.at/

BEATCS no 119

32

Finally, I wrote the first draft of this text sitting in the Café Wortner close to
his office at the TU where Helmut and I had wanted to meet to discuss another
idea: The Südbahn-Hotel had gone up for sale. Why not convince the federal
ministry, the Austrian universities, and the provinces of Lower Austria, Styria and
Vienna to acquire this inspiration for the “Grand Budapest Hotel” and turn it into
a meeting, retreat, vacation and conference space for interdisciplinary research in
central Europe? Heck, why not?

So what does Helmut leave us? The notions that it is worth

• to encourage scientists to communicate their findings—if not in all appro-
priate scientific detail then at least by the way of sharing their enthusiasm
and their zeal for their subject;

• to persuade stakeholders in science management and politics to support ba-
sic research not just for the sake of material exploitation (that is fine too)
but that doing science contributes immensely to the fabric of society and is
a genuine part of our way of life;

• to convince the media to invest time and attention into complex subjects
which do not give themselves away instantly to immediate comprehen-
sion but are worth some thorough research as the subjects open whole new
spheres of understanding (plus headlines and covers);

• to motivate the public in the context of the societal concept of participa-
tion to become a part of an enlightening sphere where visions are welcome,
problems can be handled, conflicting opinions merged for improvement of
the status quo, and ideas ventured without fear.

Sounds all too pompous?
Just imagine Helmut saying: “Listen, I have this idea.”

About the author Oliver Lehmann is Chair of the Austrian Association of Edu-
cation and Science Journalists, Head of Stakeholder Relations at IST Austria, and
was the Media and Public Affairs Chair of the Vienna Summer of Logic 2014.

33

David Stifler Johnson: A Tribute by Lance Fortnow

On the morning of March 9, 2016 I heard the terrible news from Zvi Galil of David
Johnson’s passing the previous day ending his struggle with cancer. I quickly
wrote up a blog post that I reprint below. A decade ago I had plans to write a book
on the history of the P versus NP problem and interviewed a number of theorists
including David Johnson. I found my old notes from a phone conversation I had
with David on August 2, 2005 about his early days. The notes aren’t complete but
I’ll try and tell his story the best I can. I apologize in advance for any mistakes
that follow.

David Stifler Johnson was born on December 9, 1945 in Washington, DC. He
graduated with a bachelor’s degree from Amherst College in 1967. He was inter-
ested in artificial intelligence and went to MIT to get a Master’s degree. Theo-
retical computer science was just getting started back then and David was in the
mathematics department thought he took courses in automata theory. A year and
a half later he received his MS degree with a thesis on average case analysis of
tree search algorithms.

While in Korea serving as an officer in the US Army, David read about Minsky
and Papert’s work on perceptrons and would return to MIT for a PhD in the fall of
1971. David talked about many of his fellow students at MIT: Terry Winograd was
a fellow math student, Larry Stockmeyer, Nick Pippenger, Joel Seiferas, Nancy
Lu. David, an avid runner even back then, had races inside around the corridors
of MIT.

Albert Meyer and Patrick Fischer taught algorithms from the first two volumes of
Knuth. From that class David Johnson learned about bin packing that led to his
thesis on approaches to approximating optimal solutions for that problem. David
Johnson also started thinking about online versus offline algorithms around that
time.

David Johnson started his PhD studies shortly after Cook had his seminal pa-
per on NP-completeness. David attended that IBM hosted Symposium on Com-
puter Computations in March of 1972 where Karp presented his twenty-one NP-
complete problems. David said that already at that point viewed NP-completeness
as important but Karp “brought it home”. Hopcroft during that meeting said, in
what would be a massive understatement, that he didn’t think P versus NP would

BEATCS no 119

34

be solved in ten years. There was a workshop at MIT’s Endicott house on NP-
complete problems that really got David interested in the area.

In 1973, David Johnson received his PhD from MIT and went to work at AT&T
Bell Labs. He worked for AT&T in its various guises for forty years until taking
on his final position at Columbia. He fondly remembers 1980-81, the year he took
visiting the University of Wisconsin in Madison working with Larry Landweber
and others.

Karp didn’t use the term NP-hard and NP-complete in his paper. Donald Knuth
ran a poll to come up with good terminology. Knuth discusses the results of the
poll in an essay in the January 1974 SIGACT News and after describing a number
of humorous proposals

The “winning” write-in vote is the term NP-hard, which was put
forward mainly by several people at Bell Labs, after what I under-
stand was considerable discussion...This term is intended for use
together with another new one, NP-complete, which abbreviates
’polynomial complete’ and is the same time more exact.

So not only did David Johnson and Michael Garey go ahead and write their in-
credible book on NP-completeness, they actually helped name the field.

The rest is the text based on my blog entry
http://blog.computationalcomplexity.org/2016/03/david-johnson-1945-2016.html.

David Johnson, a leader and advocate for algorithms and all of theoretical com-
puter science, passed away March 8, 2016 at the age of 70. A truly sad day for us
all.

David’s 1979 book with Michael Garey, Computers and Intractability: A Guide
to the Theory of NP-Completeness, is still the best reference on the topic and per-
haps the single most important resource in any computer scientist’s library. David
Johnson also wrote the NP-completeness column for the Journal on Algorithms
and later the ACM Transactions on Algorithms, as well as "A Catalog of Com-
plexity Classes" for the 1990 Handbook of Theoretical Computer Science. David
founded the Symposium on Discrete Algorithms (SODA), a conference that is
now often mentioned with STOC and FOCS as a top theory venue. He created the
DIMACS algorithms challenges. He led SIGACT from 1987-1991, really trans-
forming that organization, and served as its face for many years thereafter. I’m
only scratching the surface of what he’s done for the community, and can think of
no one who put more effort into making the theoretical computer science as strong
as it is.

The Bulletin of the EATCS

35

Of course David was a great researchers as well, working on NP-completeness
and approximation algorithms.

He received an ACM Fellow in 1995, the first SIGACT Distinguished Service
prize in 1997 and the Knuth Prize in 2010. He used his Knuth prize lecture to
push for practical applications for our algorithms. Just a month before he died he
was elected into the American National Academy of Engineering.

I worked with David Johnson closely on various SIGACT activities. David never
missed a STOC and we always invited him to the SIGACT Executive Committee
dinners, not because he had an official role, but because he was David Johnson. I
truly respected and admired David and glad I could call him a friend. We’ll miss
him deeply. STOC and SODA just won’t be the same without him.

Institutional
Sponsors

BEATCS no 119

38

CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany

EATCS
Columns

40

The Bulletin of the EATCS

41

The Distributed Computing Column
by

Stefan Schmid

Aalborg University, Denmark
schmiste@cs.aau.dk

BEATCS no 119

42

Survey of Distributed Decision∗

Laurent Feuilloley and Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale

CNRS and University Paris Diderot

Abstract

We survey the recent distributed computing literature on checking whether
a given distributed system configuration satisfies a given boolean predicate,
i.e., whether the configuration is legal or illegal w.r.t. that predicate. We
consider classical distributed computing environments, including mostly
synchronous fault-free network computing (LOCAL and CONGEST models),
but also asynchronous crash-prone shared-memory computing (WAIT-FREE
model), and mobile computing (FSYNC model).

1 Introduction
The objective of this note is to survey the recent achievements in the framework of
distributed decision: the computing entities of a distributed system aim at checking
whether the system is in a legal state with respect to some boolean predicate. For
instance, in a network, the computing entities may be aiming at checking whether
the network satisfies some given graph properties.

Recall that, in a construction task, processes have to collectively compute
a valid global state of a distributed system, as a collection of individual states,
like, e.g., providing each node of a network with a color so that to form a proper
coloring of that network. Instead, in a decision task, processes have to collectively
check whether a given global state of a distributed system is valid or not, like, e.g.,
checking whether a given coloring of the nodes of a network is proper [25]. In
general, a typical application of distributed decision is checking the validity of
outputs produced by the processes w.r.t. a construction task that they were supposed
to solved. This applies to various settings, including randomized algorithms as
well as algorithms subject to any kind of faults susceptible to corrupt the memory
of the processes.

∗Both authors received additional support from Inria project-team GANG.

The Bulletin of the EATCS

43

The global verdict on the legality of the system state is obtained as an aggregate
of individual opinions produced by all processes. Typically, each process opinion
is a single bit (i.e., accept or reject) expressing whether the system state looks
legal or illegal from the perspective of the process, and the global verdict is the
logical conjunction of these bits. Note that this mechanisms reflects both decision
procedures in which the individual opinions of the processes are collected by
some centralized entity, and decision procedures where any process detecting some
inconsistency in the system raises an alarm and/or launches a recovery procedure, in
absence of any central entity. We will also briefly consider less common procedures
where each process can send some limited information about its environment in the
system, and a central authority gathers the information provided by the processes
to forge its verdict about the legality of the whole system state.

The difficulty of distributed decision arises when the processes cannot obtain a
global perspective of the system, which is typically the case if one insists on some
form of locality in networks, or if the processes are asynchronous and subject to
failures. In such frameworks, not all boolean predicates on distributed systems
can be checked in a distributed manner, and one of the main issue of distributed
decision is to characterize the predicates that can be distributedly checked, and at
which cost. For predicates that cannot be checked, or for which checking is too
costly, the system can be enhanced by providing processes with certificates, with
the objective to help these processes for expressing their individual opinions. Such
certificates could be produced by an external entity, but they might also well be
produced by the processes themselves during a pre-computation phase. One typical
framework in which the latter scenario finds application is self-stabilization. Indeed,
a self-stabilizing algorithm may produce, together with its distributed output, a
distributed certificate that this output is correct. Of course, the certificates are also
corruptible, and thus not trustable. Hence, the checking procedure must involve
a distributed verification algorithm in charge of verifying the collection of pairs
(output, certificate) produced by all the processes. Some even more elaborated
mechanisms for checking the legality of distributed system states are considered in
the literature, and we survey such mechanisms as well.

We consider the most classical distributed computing models, including syn-
chronous distributed network computing [49]. In this setting, processes are nodes
of a graph representing a network. They all execute the same algorithm, they are
fault-free, and they are provided with distinct identities in some ID-space (which
can be bounded or not). All processes start simultaneously, and computation pro-
ceeds in synchronous rounds. At each round, every process exchanges messages
with its neighboring processes in the network, and performs individual computation.
The volume of communication each node can transmit and receive on each of its
links at each round might be bounded or not. The CONGEST model typically
assumes that at most O(log n) bits can be transferred along each link at each round

BEATCS no 119

44

in n-node networks. (In this case, the ID-space is supposed to be polynomially
bounded as a function of the network size). Instead the LOCAL model does not
limit the amount of information that can be transmitted along each link at each
round. So, a t-round algorithm A in the LOCAL model can be transformed into
another algorithm B in which every node first collects all data available in the ball
of radius t around it, and, second, simulateA locally without communication.

We also consider other models like asynchronous distributed shared-memory
computing [5]. In this setting, every process has access to a global memory shared
by all processes. Every process accesses this memory via atomic read and write
instructions. The memory is composed of registers, and each process is allocated
a set of private registers. Every process can read all the registers, but can only
write in its own registers. Processes are given distinct identities in [n] = {1, . . . , n}
for n-process systems. They runs asynchronously, and are subject to crashes. A
process that crashes stops taking steps. An arbitrary large number of processes can
crash. Hence, an algorithm must never include instructions leading a process to
wait for actions by another process, as the latter process can crash. This model is
thus often referred to as the WAIT-FREE model.

Finally, we briefly consider other models, including mobile computing [22],
mostly in the fully-synchronous FSYNC model in graphs (where all mobile agents
perform in lock-step, moving from nodes to adjacent nodes in a network), and
distributed quantum computing (where processes have access to intricate variables).

2 Model and Definitions
Given a boolean predicate, a distributed decision algorithm is a distributed algo-
rithm in which every process p must eventually output a value

opinion(p) ∈ {accept, reject}

such that the global system state satisfies the given predicate if and only if all
processes accept. In other word, the global interpretation of the individual opinions
produced by the processes is the logical conjunction of all these opinions:

global verdict =
∧

p

opinion(p).

Among the earliest references explicitly related to distributed decision, it is worth
mentioning [1, 6, 42]. In this section, we describe the general framework of
distributed decision, without explicit references to some specific underlying com-
putational model.

The structure of the section is inspired from the structure of complexity classes
in sequential complexity theory. Given the “base” class P of languages that are

The Bulletin of the EATCS

45

sequentially decidable by a Turing machine in time polynomial in the size of
the input, the classes NP (for non-deterministic polynomial time) and BPP (for
bounded probability polynomial time) are defined, as well as the classes ΣP

k and
ΠP

k , k ≥ 0, of the polynomial hierarchy. In this section we assume given an abstract
class BC (for bounded distributed computing), based on which larger classes can
be defined. Such a base class BC could be a complexity class like, e.g., the class of
graph properties that can be checked in constant time in the LOCAL model, or a
computability class like, e.g., the class of system properties that can be checked
in a shared-memory distributed system subject to crash failures. Given the “base”
class BC, we shall define the classes NBC, BPBC, ΣBC

k and ΠBC
k , that are to BC what

NP, BPP, ΣP
k and ΠP

k are to P, respectively.

2.1 Distributed Languages
A system configuration C is a (partial) description of a distributed system state.
For instance, in distributed network computing, a configuration C is of the form
(G, `) where G is a graph, and ` : V(G) → {0, 1}∗. Similarly, in shared memory
computing, a configuration C is of the form ` : [n]→ {0, 1}∗ where n is the number
of processes. The function ` is called labeling function, and `(v) the label of v,
which can be any arbitrary bit string. In the context of distributed decision, the
label of a process is the input of that process.

For instance, the label of a node in a processor network can be a color, and
the label of a process in a shared memory system can be a status like “elected” or
“defeated”. Note that, in both examples, a configuration is oblivious to the content
of the shared memory and/or to the message in transit. The labeling function ` may
not describe the full state of each process, but only the content of some specific
variables.

Definition 1. Given a distributed computing model, a distributed language is a
Turing-computable set of configurations compatible with this model.

For instance, in the framework of network computing,

proper-coloring = {(G, `) : ∀{u, v} ∈ E(G), `(u) , `(v)}

is the distributed language composed of all networks with a proper coloring of
their nodes (the label `(v) of node v is its color). Similarly, in the framework of
crash-prone shared-memory computing,

agreement = {` : ∃y ∈ {0, 1}∗,∀i ∈ [n], x(i) = y or x(i) = ⊥}

is the distributed language composed of all systems where agreement between the
non-crashed processes is achieved (the label of process pi is `(i), and the symbol ⊥
refers to the scenario in which process pi crashed).

BEATCS no 119

46

For a fixed distributed language L, a configuration in L is said to be legal, and
a configuration not in L is said to be illegal. Any distributed language L defines
a construction task, in which every process must compute a label such that the
collection of labels outputted by the processes form a legal configuration for L. In
the following, we are mostly interested in decision tasks, where the labels of the
nodes are given, and the processes must collectively check whether these labels
form a legal configuration.

Notation. Given a system configuration C with respect to some distributed com-
puting model, we denote by V(C) the set of all computing entities (a.k.a. processes)
in C. This notation reflects the fact that, in the following, the set of processes will
most often be identified as the vertex-set V(G) of a graph G

2.2 Distributed Decision

Given a distributed computing model, let us define some bounded computing
class BC as a class of distributed languages that can be decided with a distributed
algorithmA using a bounded amount of resources. Such an algorithmA is said to
be bounded. What is meant by “resource” depends on the computing model. In
most of the models investigated in this paper, the resource of interest is the number
of rounds (as in the LOCAL and CONGEST models), or the number of read/write
operations (as in the WAIT-FREE model). A distributed language L is in BC if and
only if there exists a bounded algorithmA such that, for any input configuration
C, the algorithmA outputsA(C, v) at each process v, and this output satisfies:

C ∈ L ⇐⇒ for every v ∈ V(C), A(C, v) = accept. (1)

That is, for every C ∈ L, running A on C results in all processes accepting C.
Instead, for every C < L, runningA on C results in at least one process rejecting C.

Example. In the context of network computing, proper-coloring can be decided
in one round, by having each node merely comparing its color with the ones of its
neighbors, and accepting if and only if its color is different from all these colors.
Similarly, in the context of shared-memory computing, agreement can be decided
by having each node performing just one read/write operation, accepting if and
only if all labels different from ⊥ observed in memory are identical. In other words,
assuming that BC is a network computing class bounding algorithms to perform in
a constant number of rounds, we have

proper-coloring ∈ BC

The Bulletin of the EATCS

47

for any model allowing each process to send its color to all its neighbors in a
constant number of rounds, like, e.g., the LOCAL model. Similarly, assuming
that BC is a shared-memory computing class bounding algorithms to perform in a
constant number of read/write operations, we have

agreement ∈ BC.

Notation. In the following, Eq. (1) will often be abbreviated with

C ∈ L ⇐⇒ A(C) = accept

in the sense thatA accepts if and only if each of the processes accepts.

Note that the rule of distributed decision, i.e., the logical conjunction of the
individual boolean outputs of the processes is not symmetric. For instance, deciding
whether a graph is properly colored can be done locally, while deciding whether a
graph is not properly colored may require long-distance communications. On the
other hand, asking for other rules, like unanimous decision (where all processes
must reject an illegal configuration) or even just majority decision, would require
long-distance communications for most classical decision problems.

2.3 Probabilistic Distributed Decision

The bounded computing class BC is a base class upon which other classes can be
defined. Given p, q ∈ [0, 1], we define the class BPBC(p, q), for bounded probabil-
ity bounded computing, as the class of all distributed languages L for which there
exists a randomized bounded algorithmA such that, for every configuration C,{

C ∈ L ⇒ Pr[A(C) = accept] ≥ p;
C < L ⇒ Pr[A(C) = reject] ≥ q. (2)

Such an algorithmA is called a (p, q)-decider for L. Note that, as opposed to the
class BPP of complexity theory, the parameters p and q are not arbitrary, in the
sense that boosting the probability of success of a (p, q)-decider in order to get
a (p′, q′)-decider with p′ > p and q′ > q is not always possible. Indeed, if A is
repeated many times on an illegal instance, say k times, it may well be the case that
each node will reject at most once during the k repetitions, because, at each iteration
of A, rejection could come from a different node. As a consequence, classical
boosting techniques based on repetition and taking majority do not necessarily
apply.

BEATCS no 119

48

Example. Let us consider the following distributed language, where each process
can be labeled either white or black, i.e., ` : V(C)→ {◦, •}:

amos = {` : |{v ∈ V(C) : `(v) = •}| ≤ 1}.

Here, amos stands for “at most one selected”, where a node v is selected if
`(v) = •. There is a trivial (p, q)-decider for amos as long as p2 + q ≤ 1,
which works as follows. Every node v with `(v) = ◦ accepts (with probabil-
ity 1). A node v with `(v) = • accepts with probability p, and rejects with
probability 1 − p. If C ∈ amos, then Pr[all nodes accept C] ≥ p. If C < amos, then
Pr[at least one node rejects C] ≥ 1 − p2 ≥ q.

2.4 Distributed Verification

Given a bounded computing class BC, we describe the class NBC, which is to
BC what NP is to P in complexity theory. We define the class NBC, for non-
deterministic bounded computing, as the class of all distributed languages L such
that there exists a bounded algorithmA satisfying that, for every configuration C,

C ∈ L ⇐⇒ ∃c : A(C, c) = accepts (3)

where
c : V(C)→ {0, 1}∗.

The function c is called the certifying function. It assigns a certificate to every
process, and the certificates do not need to be identical. Note that the certificate
c(v) of process v must not be mistaken with the label `(v) of that process.

The bounded algorithmA is also known as a verification algorithm for L, as it
verifies a given proof c, which is supposed to certify that C ∈ L. At each process
v ∈ V(C), the verification algorithm takes as input the pair (`(v), c(v)). Note that
the appropriate certificate c leading to accept a configuration C ∈ L may depend
on the given configuration C. However, for C < L, the verification algorithmA
must systematically guaranty that at least one process rejects, whatever the given
certificate function is.

Alternatively, one can interpret Eq. (3) as a game between a prover which, for
every configuration C, assigns a certificate c(v) to each process v ∈ V(C), and
a verifier which checks that the certificates assigned by the prover collectively
form a proof that C ∈ L. For a legal configuration (i.e., a configuration in L) the
prover must be able to produce a distributed proof leading the distributed verifier
to accept, while, for an illegal configuration, the verifier must reject in at least one
node whatever the proof provided by the prover is.

The Bulletin of the EATCS

49

Example. Let us consider the distributed language

acyclic = {(G, `) : G has no cycles}

in the context of network computing. Note that acyclic cannot be decided locally,
even in the LOCAL model. However, acyclic can be verified in just one round. If
G is acyclic, i.e., G is a forest, then let us select an arbitrary node in each tree of G,
and call it a root. Next, let us assign to each node u ∈ V(G) the certificate c(u) equal
to its distance to the root of its tree. The verification algorithmA then proceeds
at every node u as follows. Node u exchanges its certificate with the ones of it
neighbors, and checks that it has a unique neighbor v satisfying c(v) = c(u)−1, and
all the other neighbors w , v satisfying c(w) = c(u) + 1. (If u has c(u) = 0, then it
checks that all its neighbors w have c(w) = 1). If all tests are passed, then u accepts,
else it rejects. If G is a acyclic, then, by construction, the verification accepts at all
nodes. Instead, if G has a cycle, then, for every setting of the certifying function,
some inconsistency will be detected by at least one node of the cycle, which leads
this node to reject. Hence

acyclic ∈ NBC

where BC bounds the number of rounds, for every distributed computing model
allowing every node to exchange O(log n) bits along each of its incident edges at
every round, like, e.g., the CONGEST model.

Notation. For any function f : N → N, we define NBC(f) as the class NBC
where the certificates are bounded to be on at most f (n) bits in n-node networks.
For f ∈ Θ(log n), NBC(f) is rather denoted by log-NBC.

2.5 Distributed Decision Hierarchy
In the same way the polynomial hierarchy PH is built upon P using alternating
universal and existential quantifiers, one can define a hierarchy built upon base
class BC. Given a class BC for some distributed computing model, we define the
distributed decision hierarchy DHBC as follows. We set ΣBC

0 = ΠBC
0 = BC, and, for

k ≥ 1, we set ΣBC
k as the class of all distributed languages L such that there exists a

bounded algorithmA satisfying that, for every configuration C,

C ∈ L ⇐⇒ ∃c1 ∀c2 ∃c3 . . .Qck : A(C, c1, . . . , ck) = accept

where, for every i ∈ {1, . . . , k}, ci : V(C)→ {0, 1}∗, and Q is the universal quantifier
if k is even, and the existential one otherwise. The class ΠBC

k is defined similarly,
by having a universal quantifier as first quantifier, as opposed to an existential one
as in ΣBC

k . The ci’s are called certifying functions. In particular, we have

NBC = ΣBC
1 .

BEATCS no 119

50

Finally, we define
DHBC =

(
∪k≥0 ΣBC

k
)
∪ (∪k≥0 ΠBC

k).

As for NBC, a class ΣBC
k or ΠBC

k can be viewed as a game between a prover (playing
the existential quantifiers), a disprover (playing the universal quantifiers), and a
verifier (running a verification algorithmA).

Example. Let us consider the distributed language

vertex-cover =
{
(G, `) : {v ∈ V(G) : `(v) = 1} is a minimum vertex cover

}
in the context of network computing. We show that vertex-cover ∈ ΠBC

2 , that is,
there exists a bounded distributed algorithmA such that

(G, `) ∈ vertex-cover ⇐⇒ ∀c1 ∃c2 : A(G, `, c1, c2) = accept

where BC is any network computing class bounding algorithms to perform in a
constant number of rounds. For any configuration (G, `), the disprover tries to
provide a vertex cover c1 : V(G)→ {0, 1} of size smaller than the solution `, i.e.,
|{v ∈ V(G) : c1(v) = 1}| < |{v ∈ V(G) : `(v) = 1}|. On a legal configuration (G, `),
the prover then reacts by providing each node v with a certificates c2(v) such that
the c2-certificates collectively encode a spanning tree (and its proof) aiming at
demonstrating that there is an error in c1 (like c1 is actually not smaller than `, or c1

is not covering some edge, etc.). It follows that

vertex-cover ∈ ΠBC
2

for any model allowing each process to exchange O(log n)-bits messages with its
neighbors in a constant number of rounds, like, e.g., the CONGEST model.

Notation. Similarly to the class NBC, for any function f : N → N, we define
ΣBC

k (f) (resp., ΠBC
k (f)) as the class ΣBC

k (resp., ΠBC
k) where all certificates are bounded

to be on at most f (n) bits in n-node networks. For f ∈ Θ(log n), these classes are
denoted by log-ΣBC

k and log-ΠBC
k , respectively. The classes DHBC(f) and log-DHBC

are defined similarly.

3 Distributed Decision in Networks
In this section, we focus on languages defined as collections of configurations of the
form (G, `) where G is a simple connected n-node graph, and ` : V(G)→ {0, 1}∗ is
a labeling function assigning to every node v a label `(v). Recall that an algorithm
A is deciding a distributed language L if and only if, for every configuration (G, `),

(G, `) ∈ L ⇐⇒ A(G, `) accepts at all nodes.

The Bulletin of the EATCS

51

3.1 LOCAL model

3.1.1 Local Distributed Decision (LD and BPLD)

In their seminal paper [48], Naor and Stockmeyer define the class LCL, for locally
checkable labelings. Let ∆ ≥ 0, k ≥ 0, and t ≥ 0, and let B be a set of balls of
radius at most t with nodes of degree at most ∆, labeled by labels in [k]. Note that
B is finite. Such a set B defines the language L consisting of all configurations
(G, `) where G is a graph with maximum degree ∆, and ` : V(G)→ [k], such that
all balls of radius t in (G, `) belong to B. The set B is called the set of good balls
for L. LCL is the class of languages that can be defined by a set of good balls,
for some parameters ∆, k, and t. For instance the set of k-colored graphs with
maximum degree ∆ is a language in LCL. The good balls of this LCL language are
simply the balls of radius 1 where the center node is labeled with a color different
from all the colors of its neighbors.

A series of results were achieved in [48] about LCL languages. In particular, it
is Turing-undecidable whether any given L ∈ LCL has a construction algorithm
running in O(1) rounds in the LOCAL model. Also, [48] showed that the node IDs
play a limited role in the context of LCL languages. Specifically, [48] proves that,
for every r ≥ 0, if a language L ∈ LCL has a r-round construction algorithm, then
it has also a r-round order invariant construction algorithm, where an algorithm is
order invariant if the relative order of the node IDs may play a role, but not the
actual values of these IDs. The assumption L ∈ LCL can actually be discarded, as
long as L remains defined on constant degree graphs with constant labels. That
is, [3] proved that, in constant degree graphs, if a language with constant size labels
has a r-round construction algorithm, then it has also a r-round order invariant
construction algorithm. Last but not least, [48] established that randomization is
of little help in the context of LCL languages. Specifically, [48] proves that if a
language L ∈ LCL has a randomized Monte-Carlo construction algorithm running
in O(1) rounds, then L also has a deterministic construction algorithm running in
O(1) rounds.

The class LD, for local decision was defined in [33] as the class of all distributed
languages that can be decided in O(1) rounds in the LOCAL model. The class LD
is the basic class playing the role of BC in the context of local decision. Hence
LCL ⊆ LD since the set of good balls of a language in LCL is, by definition, finite.
On the other hand, LCL ⊂ LD, where the inclusion is strict since LD does not
restrict the graphs to be of bounded degree, nor the labels to be of bounded size.
Given p, q ∈ [0, 1], the class BPLD(p, q), for bounded probability local decision,
was defined in [33] as the class of languages for which there is a (p, q)-decider
running in O(1) rounds in the LOCAL model. For p2 + q ≤ 1, BPLD(p, q) is
shown to include languages that cannot be even decided deterministically in o(n)

BEATCS no 119

52

rounds. On the other hand, [33] also establishes a derandomization result, stating
that, for p2 + q > 1, if L ∈ BPLD(p, q), then L ∈ LD. This results however
holds only for languages closed under node deletion, and it is proved in [27] that,
for any every c ≥ 2, there exists a language L with a (p, q)-decider satisfying
pc +q > 1 and running in a single round, which cannot be decided deterministically
in o(

√
n) rounds. On the other hand, [27] proves that, for p2 + q > 1, we have

BPLD(p, q) = LD for all languages restricted on paths.
On the negative side, it was proved in [27] that boosting the probability of

success for decision tasks is not always achievable in the distributed setting, by
considering the classes

BPLDk =
⋃

p1+1/k+q>1

BPLD(p, q) and BPLD∞ =
⋃

p+q>1

BPLD(p, q)

for any k ≥ 1, and proving that, for every k ≥ 1, BPLDk ⊂ BPLD∞, and BPLDk ⊂

BPLDk+1, where all inclusions are strict.
On the positive side, it was proved in [20] that the result in [48] regarding the

derandomization of construction algorithms can be generalized from LCL to BPLD.
Namely, [20] proves that, for languages on bounded degree graphs and bounded
size labels, for every p > 1

2 and q > 1
2 , if L ∈ BPLD(p, q) has a randomized

Monte-Carlo construction algorithm running in O(1) rounds, then L has also a
deterministic construction algorithm running in O(1) rounds.

3.1.2 Identity-Oblivious Algorithms (LDO)

In the LOCAL model, a distributed algorithm is identity-oblivious, or simply ID-
oblivious, if the outputs of the nodes are not impacted by the identities assigned
to the nodes. That is, for any two ID-assignments given to the nodes, the output
of every node must be identical in both cases. Note that an identity-oblivious
algorithm may use the IDs of the nodes (e.g., to distinguish them), but the output
must be oblivious to these IDs.

The class LDO, for local decision oblivious was defined in [28,29], as the class
of all distributed languages that can be decided in O(1) rounds by an ID-oblivious
algorithm in the LOCAL model. The class LDO is the basic class playing the role of
BC in the context of ID-oblivious local decision. It is shown in [29] that LDO = LD
when restricted to languages that are closed under node deletion. However, it is
proved in [28] that LDO ⊂ LD, where the inclusion is strict. In the language
L ∈ LD\LDO used in [28] to prove the strict inclusion LDO ⊂ LD, each node label
includes a Turing machine M. Establishing L ∈ LD makes use of an algorithm
simulating M at each node, for a number of rounds equal to the identity of the node.
Establishing L < LDO makes use of the fact that an ID-oblivious algorithm can be
sequentially simulated, and therefore, if an ID-oblivious algorithm would allow

The Bulletin of the EATCS

53

to decide L, then by simulation of this algorithm, there would exist a sequential
algorithm for separating the set of Turing machines that halts and output 0 from
the set of Turing machines that halts and output 1, which is impossible.

In [29,30], the power of IDs in local decision is characterized using oracles. An
oracle is a trustable party with full knowledge of the input, who can provide nodes
with information about this input. It is shown in [29] that LDO ⊆ LD ⊆ LDO#node

where #node is the oracle providing each node with an arbitrary large upper bound
on the number of nodes. A scalar oracle f returns a list f (n) = (f1, . . . , fn) of n
values that are assigned arbitrarily to the n nodes in a one-to-one manner. A scalar
oracle f is large if, for any set of k nodes, the largest value provided by f to the
nodes in this set grows with k. [30] proved that, for any computable scalar oracle
f , we have LDO f = LD f if and only if f is large, where LD f (resp., LDO f) is the
class of languages that can be locally decided in O(1) rounds in the LOCAL model
by an algorithm (resp., by an ID-oblivious algorithm) which uses the information
provided by f available at the nodes.

3.1.3 Anonymous Networks

Derandomization results were achieved in [19] in the framework of anonymous
network (that is, nodes have no IDs). Namely, for every language L that can be
decided locally in any anonymous network, if there exists a randomized anony-
mous construction algorithm for L, then there exists a deterministic anonymous
construction algorithm for L, provided that the latter is equipped with a 2-hop
coloring of the input network.

3.2 CONGEST model

3.2.1 Non-Local Algorithms

In [44] and [17] the authors consider decision problems such as checking whether
a given set of edges forms a spanning tree, checking whether a given set of edges
forms a minimum-weight spanning tree (MST), checking various forms of con-
nectivity, etc. All these decision tasks require essentially Θ(

√
n + D) rounds (the

lower bound is typically obtained using reduction to communication complexity).
In particular, [17] proved that checking whether a given set of edges is a span-
ning tree requires Ω(

√
n + D) rounds, which is much more that what is required

to construct a spanning tree (O(D) rounds, using a simple breadth-first search).
However, [17] proved that, for some other problems (e.g., MST), lower bounds
on the round-complexity of the decision task consisting in checking whether a
solution is valid yield lower bounds on the round-complexity of the corresponding
construction task, and this holds also for the construction of approximate solutions.

BEATCS no 119

54

The congested clique model is the CONGEST model restricted to complete
graphs. Deciding whether a graph given as input contains some specific patterns
as subgraphs has been considered in [16] and [18] for the congested clique. In
particular, [16] provides an algorithm for deciding the presence of a k-node cycle
Ck running in O(2O(k)n0.158)-rounds.

3.2.2 Local Algorithms

Very few distributed languages on graphs can be checked locally in the CONGEST
model. For instance, even just deciding whether G contains a triangle cannot be
done in O(1) rounds in the CONGEST model. Distributed property testing is a
framework recently introduced in [15]. Let 0 < ε < 1 be a fixed parameter. Recall
that, according to the usual definition borrowed from property testing (in the so-
called sparse model), a graph property P is ε-far from being satisfied by an m-edge
graph G if applying a sequence of at most εm edge-deletions or edge-additions to
G cannot result in a graph satisfying P. We say that a distributed algorithmA is
a distributed testing algorithm for P if and only if, for any graph G modeling the
actual network,{

G satisfies P =⇒ Pr[A accepts G in all nodes] ≥ 2
3 ;

G is ε-far from satisfying P =⇒ Pr[A rejects G in at least one node] ≥ 2
3 .

Among other results, [15] proved that, in bounded degree graphs, bipartiteness can
be distributedly tested in O(polylog n) rounds in the CONGEST model. Moreover,
it is also proved that triangle-freeness can be distributedly tested in O(1) rounds.
(The dependence in ε is hidden in the big-O notation). This latter result has been
recently extended in [40] to testing H-freeness, for every 4-node graph H, in O(1)
rounds. On the other hand, it is not known whether distributed testing K5-freeness
or C5-freeness can be achieved in O(1) rounds, and [40] proves that “natural”
approaches based on DFS or BFS traversals do not work.

3.3 General Interpretation of Individual Outputs
In [3, 4], a generalization of distributed decision is considered, where every node
outputs not just a single bit (accept or reject), but can output an arbitrary bit-string.
The global verdict is then taken based on the multi-set of all the binary strings
outputted by the nodes. The concern is restricted to decision algorithms performing
in O(1) rounds in the LOCAL model, and the objective is to minimize the size of
the outputs. The corresponding basic class BC for outputs on O(1) bits is denoted
by ULD, for universal LD. (It is universal in the sense that the global interpretation
of the individual outputs is not restricted to the logical conjunction). It is proved
in [3] that, for any positive even integer ∆, every distributed decision algorithm for

The Bulletin of the EATCS

55

cycle-freeness in connected graphs with degree at most ∆ must produce outputs
of size at least dlog ∆e − 1 bits. Hence, cycle-freeness does not belong to ULD in
general, but it does belong to ULD for constant degree graphs.

In [11] the authors consider a model in which each node initially knows the
IDs of its neighbors, while the nodes do not communicate through the edges of the
network but via a public whiteboard. The concern of [11] is mostly restricted to the
case in which every node can write only once on the whiteboard, and the objective
is to minimize the size of the message written by each node on the whiteboard.
The global verdict is then taken based on the collection of messages written on
the whiteboard. It is shown that, with just O(log n)-bit messages, it is possible
to rebuild the whole graph from the information on the whiteboard as long as
the graph is planar or, more generally, excluding a fixed minor. Variants of the
model are also considered, in which problems such as deciding triangle-freeness
or connectivity are considered. See also [43] for deciding the presence of induced
subgraphs.

4 Distributed Verification in Networks

In this section, we still focus on languages defined as collections of configurations
of the form (G, `) where G is a simple connected n-node graph, and ` : V(G) →
{0, 1}∗ is a labeling function. Recall that an algorithmA is verifying a distributed
language L if and only if, for every configuration (G, `),

(G, `) ∈ L ⇐⇒ ∃c : A(G, `, c) accepts at all nodes (4)

where c : V(G) → {0, 1}∗, and c(v) is called the certificate of node v ∈ V(G).
Again, the certificate c(v) of node v must not be mistaken with the label `(v) of
node v. Also, the notion of certificate must not be confused with the notion of
advice. While the latter are trustable information provided by an oracle [26,31,32],
the former are proofs that must be verified.

We survey the results about the class NBC = ΣBC
1 where the basic class BC is

LD, LDO, ULD, etc.

4.1 LOCAL model

It is crucial to distinguish two cases in Eq. (4), depending on whether the certificates
can depend on the identities assigned to the nodes, or not, as reflected in Eq. (5)
and (6) below.

BEATCS no 119

56

4.1.1 Local Distributed Verification (ΣLD
1 , PLS, and LCP)

A distributed language L satisfies L ∈ ΣLD
1 if and only if there exists a verification

algorithm A running in O(1) rounds in the LOCAL model such that, for every
configuration (G, `), we have{

(G, `) ∈ L ⇒ ∀ID,∃c, A(G, `, c) accepts at all nodes
(G, `) < L ⇒ ∀ID,∀c, A(G, `, c) rejects in at least one node (5)

where c : V(G) → {0, 1}∗, and where, for (G, `) ∈ L, the assignment of the
certificates to the nodes may depend on the identities given to these nodes. This
notion has actually been introduced under the terminology proof-labeling scheme
in [47], where the concern is restricted to verification algorithms running in just
a single round, with the objective of minimizing the size of the certificates. In
particular, it is proved that minimum-weight spanning tree can be verified with
certificates on O(log2) bits in n-node networks, and this bound in tight [45] (see
also [44]). Interestingly, the Ω(log2 n) bits lower bound on the certificate size
can be broken, and reduced to O(log n) bits, to the price of allowing verification
to proceed in O(log n) rounds [46]. There are tight connections between proof-
labeling schemes and compact silent self-stabilizing algorithms [13], and proof-
labeling schemes can even be used as a basis to semi-automatically derive compact
time-efficient self-stabilizing algorithms [12]. Let PLS be the class of distributed
languages for which there exists a proof-labeling scheme. We have

PLS = ALL

where ALL is the class of all distributed languages on networks (i.e., with config-
urations of the form (G, `)). This equality is however achieved using certificates
on O(n2 + nk) bits in n-node networks, where k is the maximum size of the labels
in the given configuration (G, `). The O(n2) bits are used to encode the adjacency
matrix of the network, and the O(nk) bits are used to encode the inputs to the nodes.

The notion of proof-labeling scheme has been extended in [41] to the notion of
locally checkable proofs, which is the same as proof-labeling scheme but where
the verification algorithm is not bounded to run in a single round, but may perform
an arbitrarily large constant number of rounds. Let LCP be the associate class of
distributed languages. By definition, we have

LCP = ΣLD
1 ,

and, more specifically,
LCP(f) = ΣLD

1 (f)

for every function f bounding the size of the certificates. Moreover, since PLS =

ALL, it follows that
PLS = LCP = ΣLD

1 = ALL.

The Bulletin of the EATCS

57

Yet, allowing more rounds for the verification may enable to save space in the
certificate size. This is indeed the case for some languages [10], that is there are
functions f for which

PLS(f) ⊂ LCP(f)

with strict inclusions. It is proved in [41] that there are natural languages (e.g.,
the set of graphs with a non-trivial automorphism, 3-non-colorability, etc.) which
require certificates on Ω̃(n2) bits in n-node networks. Recently, [9] introduced
a mechanism enabling to reduce exponentially the amount of communication in
proof-labeling schemes, using randomization. See also [51] for applications of
locally checkable proofs to software-defined networks.

4.1.2 Identity-Oblivious Algorithms (ΣLDO
1 and NLD)

A distributed language L satisfies L ∈ ΣLDO
1 if and only if there exists a verification

algorithm A running in O(1) rounds in the LOCAL model such that, for every
configuration (G, `), we have{

(G, `) ∈ L ⇒ ∃c, ∀ID, A(G, `, c) accepts at all nodes
(G, `) < L ⇒ ∀c, ∀ID, A(G, `, c) rejects in at least one node (6)

where c : V(G) → {0, 1}∗, and, for (G, `) ∈ L, the assignment of the certificates
to the nodes must not depend on the identities given to these nodes. In [33], the
class NLD, for non-deterministic local decision is introduced. In NLD, even if
the certificates must not depend on the identities of the nodes, the verification
algorithm is not necessarily identity-oblivious. Yet, it was proved in [29] that
restricting the verification algorithm to be identity-oblivious does not restrict the
power of the verifier. Hence,

NLD = ΣLDO
1

ΣLDO
1 is characterized in [29] as the class of languages that are closed under lift,

where H is a k-lift of G if there exists an homomorphism from H to G preserving
radius-k balls. Hence,

ΣLDO
1 ⊂ ALL

where the inclusion is strict. However, it was proved in [33] that, for every
distributed language L, and for every p, q such that p2 + q ≤ 1, there is a non-
deterministic (p, q)-decider forL. In other words, for every p, q such that p2+q ≤ 1,
we have

BPNLD(p, q) = ALL.

In [33], a complete problem for NLD was identified. However, it was recently
noticed in [7] that the notion of local reduction used in [33] is way too strong,
enabling to bring languages outside NLD into NLD. A weaker notion of local

BEATCS no 119

58

reduction was thus defined in [7], preserving the class NLD. A language is proved
to be NLD-complete under this weaker type of local reduction.

4.1.3 Anonymous Networks

Distributed verification in the context of fully anonymous networks (no node-
identities, and no port-numbers) has been considered in [23].

4.2 CONGEST model (log-ΣLD

1 and log-LCP)

The class log-LCP, that is, log-ΣLD
1 , i.e., ΣLD

1 with certificates of size O(log n) bits,
was investigated in [41]. This class fits well with the CONGEST model, which
allows to exchange messages of at most O(log n) bits at each round. For instance,
non-bipartiteness is in log-LCP. Also, restricted to bounded-degree graphs, there
are problems in log-LCP that are not contained in NP, but log-LCP ⊆ NP/poly,
i.e., NP with a polynomial-size non-uniform advice. Last but not least, [41] shows
that existential MSO on connected graphs is included in log-LCP.

4.3 General Interpretation of Individual Outputs

As already mentioned in Section 3.3, a generalization of distributed decision was
considered in [3,4], where every node outputs not just a single bit (accept or reject),
but can output an arbitrary bit-string. The global verdict is then taken based on the
multi-set of all the binary strings outputted by the nodes. The concern is restricted
to decision algorithm performing in O(1) rounds in the LOCAL model, and the
objective is to minimize the size of the output. The certificates must not depend on
the node IDs, that is, verification proceed as specified in Eq. (6). For constant size
outputs, it is shown in [4] that the class UNLD = ΣULD

1 satisfies

UNLD = ALL

with just 2-bit-per-node outputs, which has to be consider in contrast to the fact
that NLD is restricted to languages that are closed under lift (cf. Section 4.1.2).
This result requires using certificates on O(n2 + nk) bits in n-node networks, where
k is the maximum size of the labels in the given configuration (G, `), but [4]
shows that this is unavoidable. Also, while verifying cycle-freeness using the
logical conjunction of the 1-bit-per-node outputs requires certificates on Ω(log n)
bits [41], it is proved in [4] that, by simply using the conjunction and the disjunction
operators together, on only 2-bit-per-node outputs, one can verify cycle-freeness
using certificates of size O(1) bits.

The Bulletin of the EATCS

59

5 Local Hierarchies in Networks
In this section, we survey the results about the hierarchies ΣBC

k and ΠBC
k , k ≥ 0, for

different basic classes BC, including LD, LDO, etc.

5.1 LOCAL model (DHLD and DHLDO)
We have seen in Section 4.1.1 that ΣLD

1 = ALL, which implies that the local dis-
tributed hierarchy DHLD collapses at the first level. On the other hand, we have
also seen in Section 4.1.2 that ΣLDO

1 ⊂ ALL, where the inclusion is strict as ΣLDO
1 is

restricted to languages that are closed under lift. It was recently proved in [7] that

LDO ⊂ ΠLDO
1 ⊂ ΣLDO

1 = ΣLDO
2 ⊂ ΠLDO

2 = ALL

where all inclusions are strict. Hence, the local ID-oblivious distributed hierarchy
collapses at the second level. Moreover, it is shown that ΠLDO

2 has a complete
problem for local label-preserving reductions. (A complete problem for ALL was
also identified in [33], but using an inappropriate notion of local reduction).

In the context of a general interpretation of individual outputs (see Section 4.3),
[4] proved that ΣULD

1 = ALL.

5.2 CONGEST model (log-DHLD)
We have previously seen that ΣLD

1 = ALL. However, this requires certificates of
polynomial size. In order to fit with the constraints of the CONGEST model,
the local distributed hierarchy with certificate of logarithmic size was recently
investigated in [21]. While it follows from [45] that mst < log-ΣLD

1 , it is shown
in [21] that

mst ∈ log-ΠLD
2 .

In fact, [21] proved that, for any k ≥ 1,

log-ΣLD
2k = log-ΣLD

2k−1 and log-ΠLD
2k+1 = log-ΠLD

2k,

and thus focused only on the hierarchy (Λk)k≥0 defined by Λ0 = LD, and, for k ≥ 1,

Λk =

{
log-ΣLD

k if k is odd
log-ΠLD

k if k is even.

It is proved that if there exists k ≥ 0 such that Λk+1 = Λk, then Λk′ = Λk for all
k′ ≥ k. That is, the hierarchy collapses at the k-th level. Moreover, there exists a
distributed language on 0/1-labelled oriented paths that is outside the Λk-hierarchy,
and thus outside log-DHLD. However, deciding whether a given solution to several

BEATCS no 119

60

optimisation problems such as maximum independent set, minimum dominating
set, maximum matching, max-cut, min-cut, traveling salesman, etc., is optimal are
all in co-Λ1, and thus in log-ΠLD

2 . The absence of a non-trivial automorphism is
proved to be in Λ3, that is log-ΣLD

3 — recall that this language requires certificated
of Ω̃(n2) bits to be placed in ΣLD

1 (see [41]). It is however not known whether
Λ3 , Λ2, that is whether log-ΠLD

2 ⊂ log-ΣLD
3 with a strict inclusion.

5.3 Distributed Graph Automata (DHDGA)

An analogue of the polynomial hierarchy, where sequential polynomial-time com-
putation is replaced by distributed local computation was recently investigated
in [50]. The model in [50] is called distributed graph automata. This model
assumes a finite-state automaton at each node (instead of a Turing machine), and
assumes anonymous computation (instead of the presence of unique node identi-
ties). Also, the model assumes an arbitrary interpretation of the outputs produced
by each automaton, based on an arbitrary mapping from the collection of all au-
tomata states to {true, false}. The main result in [50] is that the hierarchy DHDGA

coincides with MSO on graphs.

6 Other Computational Models

6.1 Wait-Free Computing

The class WFD defined as the class of all distributed languages that are wait-free
decidable was characterized in [36] as the class of languages satisfying the so-
called projection-closeness property. For non projection-closed languages, [37]
investigated more general interpretation of the individual opinions produced by
the processes, beyond the logical conjunction of boolean opinons. In [35], it
is proved that k-set agreement requires that the processes must be allowed to
produce essentially k different opinions to be wait-free decided. The class ΣWFD

1
has been investigated in [38, 39], with applications to the space complexity of
failure detectors. Interestingly, it is proved in [14] that wait-free decision finds
applications to run-time verification.

6.2 Mobile Computing

The class MAD, for mobile agent decision has been considered in [34], as well as
the class MAV = ΣMAD

1 , for mobile agent verification. It is proved that MAV has a
complete language for a basic notion of reduction. The complement classes of

The Bulletin of the EATCS

61

MAD and MAV have been recently investigated in [8] together with sister classes
defined by other ways of interpreting the opinions of the mobile agents.

6.3 Quantum Computing

Distributed decision in a framework in which nodes can have access to extra
ressources, such as shared randomness, or intricate variables (in the context of
quantum computing) is discussed in [2].

7 Conclusion

Distributed decision and and distributed verification are known to have applications
to very different contexts of distributed computing, including self-stabilization,
randomized algorithms, fault-tolerance, runtime verification, etc. In this paper, our
aim was to survey the results targeting distributed decision and verification per se.
Beside the many interesting problems left open in each of the references listed in
this paper, we want to mention two important issues.

Lower bounds in decision problems are often based on spatial or temporal
arguments. Typically, the lack of information about far away processes, or the lack
of information about desynchronized (or potentially crashed) processes, prevents
processes to forge a consistent opinion about the global status of the distributed
system. In the context of shared ressources, such type of arguments appears
however to be too weak (cf. [2]). Similarly, lower bounds in verification problems
are often based on reduction to communication complexity theory. However, such
reductions appear to be difficult to apply to higher classes in the local hierarchy,
like separating the class at the third level from the class at the second level of the
local hierarchy with O(log n)-bit certificates (cf. [21]).

This paper has adopted a systematic approach for presenting the results related
to distributed decision and verification from the literature. This approach was
inspired from sequential complexity and sequential computability theories. Such
an approach provides a framework that enables to clearly separate decision from
verification, as well as clearly separate the results obtained under different assump-
tion (ID-oblivious, size of certificates, etc.). As already mentioned in [24], we
believe that distributed decision provides a framework in which bridges between
very different models might be identified, as decision tasks enables easy reductions
between languages, while construction tasks are harder to manipulate because of
the very different natures of their outputs.

BEATCS no 119

62

References
[1] Yehuda Afek, Shay Kutten, and Moti Yung. The local detection paradigm and its

application to self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997.

[2] Heger Arfaoui and Pierre Fraigniaud. What can be computed without communica-
tions? SIGACT News, 45(3):82–104, 2014.

[3] Heger Arfaoui, Pierre Fraigniaud, David Ilcinkas, and Fabien Mathieu. Distributedly
testing cycle-freeness. In 40th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), pages 15–28, 2014.

[4] Heger Arfaoui, Pierre Fraigniaud, and Andrzej Pelc. Local decision and verification
with bounded-size outputs. In 15th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), pages 133–147, 2013.

[5] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations,
and Advanced Topics. Wiley, 2004.

[6] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by
local checking and correction (extended abstract). In 32nd Symposium on Foundations
of Computer Science (FOCS), pages 268–277, 1991.

[7] Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis Olivetti. Local
distributed verification. CoRR, abs/1605.03892, 2016.

[8] Evangelos Bampas and David Ilcinkas. On mobile agent verifiable problems. In
12th Latin American Symposium on Theoretical Informatics (LATIN), pages 123–137,
2016.

[9] Mor Baruch, Pierre Fraigniaud, and Boaz Patt-Shamir. Randomized proof-labeling
schemes. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 315–324, 2015.

[10] Mor Baruch, Rafail Ostrovsky, and Will Rosenbaum. Space-time tradeoffs for
distributed verification. Brief Announcement at the 35th ACM Symposium on
Principles of Distributed Computing, 2016.

[11] Florent Becker, Adrian Kosowski, Martín Matamala, Nicolas Nisse, Ivan Rapaport,
Karol Suchan, and Ioan Todinca. Allowing each node to communicate only once in a
distributed system: shared whiteboard models. Distributed Computing, 28(3):189–
200, 2015.

[12] Lélia Blin and Pierre Fraigniaud. Space-optimal time-efficient silent self-stabilizing
constructions of constrained spanning trees. In 35th IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 589–598, 2015.

[13] Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir. On proof-labeling schemes
versus silent self-stabilizing algorithms. In 16th International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SSS), pages 18–32, 2014.

The Bulletin of the EATCS

63

[14] Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David Rosenblueth,
and Corentin Travers. Decentralized asynchronous crash-resilient runtime verifica-
tion. Technical Report CAS-16-02-BB, Department of Computing and Software,
McMaster University, 2016.

[15] Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast
distributed algorithms for testing graph properties. CoRR, abs/1602.03718, 2016.

[16] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz,
and Jukka Suomela. Algebraic methods in the congested clique. In ACM Symposium
on Principles of Distributed Computing (PODC), pages 143–152, 2015.

[17] Atish Das-Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification
and hardness of distributed approximation. SIAM J. Comput., 41(5):1235–1265,
2012.

[18] Danny Dolev, Christoph Lenzen, and Shir Peled. "tri, tri again": Finding triangles and
small subgraphs in a distributed setting - (extended abstract). In 26th International
Symposium on Distributed Computing (DISC), pages 195–209, 2012.

[19] Yuval Emek, Christoph Pfister, Jochen Seidel, and Roger Wattenhofer. Anonymous
networks: randomization = 2-hop coloring. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 96–105, 2014.

[20] Laurent Feuilloley and Pierre Fraigniaud. Randomized local network computing. In
27th ACM on Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 340–349, 2015.

[21] Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of local deci-
sion. In 43rd International Colloquium on Automata, Languages and Programming
(ICALP), 2016.

[22] Paola Flocchini, Guiseppe Prencipe, and Nicola Santoro. Distributed Computing by
Oblivious Mobile Robots. Morgan & Claypool, 2012.

[23] Klaus-Tycho Förster, Thomas Luedi, Jochen Seidel, and Roger Wattenhofer. Local
checkability, no strings attached. In 17th International Conference on Distributed
Computing and Networking (ICDCN), page 21, 2016.

[24] Pierre Fraigniaud. Distributed computational complexities: are you Volvo-addicted
or Nascar-obsessed? In 29th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 171–172, 2010.

[25] Pierre Fraigniaud. Locality in distributed graph algorithms. In Encyclopedia of
Algorithms, pages 1143–1148. Springer, 2016.

[26] Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc. Distributed
computing with advice: information sensitivity of graph coloring. Distributed
Computing, 21(6):395–403, 2009.

[27] Pierre Fraigniaud, Mika Göös, Amos Korman, Merav Parter, and David Peleg. Ran-
domized distributed decision. Distributed Computing, 27(6):419–434, 2014.

BEATCS no 119

64

[28] Pierre Fraigniaud, Mika Göös, Amos Korman, and Jukka Suomela. What can be
decided locally without identifiers? In ACM Symposium on Principles of Distributed
Computing (PODC), pages 157–165, 2013.

[29] Pierre Fraigniaud, Magnús M. Halldórsson, and Amos Korman. On the impact
of identifiers on local decision. In 16th International Conference Principles of
Distributed Systems (OPODIS), pages 224–238, 2012.

[30] Pierre Fraigniaud, Juho Hirvonen, and Jukka Suomela. Node labels in local decision.
In 22nd International Colloquium on Structural Information and Communication
Complexity (SIROCCO), pages 31–45, 2015.

[31] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Communication algorithms
with advice. J. Comput. Syst. Sci., 76(3-4):222–232, 2010.

[32] Pierre Fraigniaud, Amos Korman, and Emmanuelle Lebhar. Local MST computation
with short advice. Theory Comput. Syst., 47(4):920–933, 2010.

[33] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for
local distributed computing. J. ACM, 60(5):35, 2013.

[34] Pierre Fraigniaud and Andrzej Pelc. Decidability classes for mobile agents computing.
In 10th Latin American Symposium on Theoretical Informatics (LATIN), pages 362–
374, 2012.

[35] Pierre Fraigniaud, Sergio Rajsbaum, Matthieu Roy, and Corentin Travers. The
opinion number of set-agreement. In 18th International Conference on the Principles
of Distributed Systems (OPODIS), pages 155–170, 2014.

[36] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Locality and checkability
in wait-free computing. Distributed Computing, 26(4):223–242, 2013.

[37] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. On the number of opin-
ions needed for fault-tolerant run-time monitoring in distributed systems. In 5th
International Conference on Runtime Verification (RV), pages 92–107, 2014.

[38] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Minimizing the number
of opinions for fault-tolerant distributed decision using well-quasi orderings. In 12th
Latin American Symposium on Theoretical Informatics (LATIN), pages 497–508,
2016.

[39] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Perfect failure detection
with very few bits. Submitted, 2016.

[40] Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of
excluded subgraphs. CoRR, abs/1605.03719, 2016.

[41] Mika Göös and Jukka Suomela. Locally checkable proofs. In 30th ACM Symposium
on Principles of Distributed Computing (PODC), pages 159–168, 2011.

[42] Gene Itkis and Leonid A. Levin. Fast and lean self-stabilizing asynchronous protocols.
In 35th Annual Symposium on Foundations of Computer Science (FOCS), pages 226–
239, 1994.

The Bulletin of the EATCS

65

[43] Jarkko Kari, Martín Matamala, Ivan Rapaport, and Ville Salo. Solving the induced
subgraph problem in the randomized multiparty simultaneous messages model. In
22nd International Colloquium on Structural Information and Communication Com-
plexity (SIROCCO), pages 370–384, 2015.

[44] Liah Kor, Amos Korman, and David Peleg. Tight bounds for distributed minimum-
weight spanning tree verification. Theory Comput. Syst., 53(2):318–340, 2013.

[45] Amos Korman and Shay Kutten. Distributed verification of minimum spanning trees.
Distributed Computing, 20(4):253–266, 2007.

[46] Amos Korman, Shay Kutten, and Toshimitsu Masuzawa. Fast and compact self-
stabilizing verification, computation, and fault detection of an MST. Distributed
Computing, 28(4):253–295, 2015.

[47] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed
Computing, 22(4):215–233, 2010.

[48] Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM J.
Comput., 24(6):1259–1277, 1995.

[49] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[50] Fabian Reiter. Distributed graph automata. In 30th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 192–201, 2015.

[51] Stefan Schmid and Jukka Suomela. Exploiting locality in distributed SDN control.
In Proceedings of the Second ACM Workshop on Hot Topics in Software Defined
Networking (HotSDN), pages 121–126, 2013.

66

The Bulletin of the EATCS

67

The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

BEATCS no 119

68

Learn to Program? Program to Learn!

Matthias Hauswirth
Università della Svizzera italiana
matthias.hauswirth@usi.ch

Abstract

Learning to program may make students more employable, and it may
make them better thinkers. However, the most important reason for learning
to program may well be that it enables an entirely new way of learning.1

1 Why Everyone Should Learn to Program
We are in a gold rush in computer science education. Countless school districts,
states, countries, non-profits, and startups rush to offer computer science, or cod-
ing, for all. The goal—or gold?—too often is seen in empowering students to get
great future-proof jobs.

This first goal—programming to earn—is fine, but it is much too limited.
A broader goal looks at computer science education as general education that

helps students to become critical thinkers. Like the headmaster of my school, who
recommended I study Latin because it would make me a better thinker. It probably
did. And so did studying computer science.

This second goal—programming to think—is great. However, I claim that
there is a third, even greater, goal for teaching computer science to each and every
person on the planet. Read on!

2 Computer Language as a Medium
In “Computer Science: Reflections on the Field, Reflections from the Field” [6],
Gerald Jay Sussman (MIT) writes an essay called “The Legacy of Computer Sci-
ence.” There he cites from his own landmark programming textbook “Structure
and Interpretation of Computer Programs” (SCIP) [1]:

1 This article is based on a blog post previously published at https://medium.com/
@mathau/learning-to-program-programming-to-learn-c2c3d71d4d1d

The Bulletin of the EATCS

69

The computer revolution is a revolution in the way we think and in
the way we express what we think. The essence of this change is the
emergence of what might best be called procedural epistemology—
the study of the structure of knowledge from an imperative point of
view, as opposed to the more declarative point of view taken by classi-
cal mathematical subjects. Traditional mathematics provides a frame-
work for dealing precisely with notions of “what is.” Computation
provides a framework for dealing precisely with notions of “how to.”

In his “Legacy of CS” essay, he then goes on about pedagogy:

Traditionally, we try to communicate [...] skills by carefully solv-
ing selected problems on a blackboard, explaining our reasoning and
organization. We hope that the students can learn by emulation, from
our examples. However, the process of induction of a general plan
from specific examples does not work very well, so it takes many ex-
amples and much hard work on the part of the faculty and students to
transfer the skills.

And here comes the most crucial part:

However, if I can assume that my students are literate in a com-
puter programming language, then I can use programs to communi-
cate ideas about how to solve problems: I can write programs that
describe the general technique of solving a class of problems and
give that program to the students to read. Such a program is pre-
cise and unambiguous—it can be executed by a dumb computer! In
a nicely designed computer language a well-written program can be
read by students, who will then have a precise description of the gen-
eral method to guide their understanding. With a readable program
and a few well-chosen examples it is much easier to learn the skills.
Such intellectual skills are very hard to transfer without the medium
of computer programming. Indeed, “a computer language is not just
a way of getting a computer to perform operations but rather it is a
novel formal medium for expressing ideas about methodology. Thus
programs must be written for people to read, and only incidentally for
machines to execute.” (SCIP)

So, “computer programming” is a kind of advanced pedagogical device! Be-
fore we investigate this idea further, let’s review the other two reasons for teaching
programming to everyone.

BEATCS no 119

70

3 Reason 1: Programming to Earn
The first reason mentioned in my introduction, the need for more software engi-
neers in industry, has some benefits. There indeed seems to be a need for more
professional software engineers, and software engineer is indeed a well regarded
and well paid job. And learning to program in school might indeed entice some
students to eventually study computer science to become professional software
engineers. However, teaching programming to everyone in school, for the sole
purpose of boosting the number of people who will later study computer science,
seems like an inappropriate use of the limited time available in school.

4 Reason 2: Programming to Think
I always wondered why the headmaster of my school told me that studying Latin
would teach me to think. That was, until I learned about the Trivium.

The Trivium is an idea from the Middle Ages and defines the foundational ed-
ucation in these times. In a presentation entitled “The Lost Tools of Learning” [9]
Dorothy Sayers discussed the idea of the Trivium at Oxford University in 1947:

The syllabus was divided into two parts: the Trivium and Quadriv-
ium. The second part–the Quadrivium–consisted of “subjects,” and
need not for the moment concern us. The interesting thing for us
is the composition of the Trivium, which preceded the Quadrivium
and was the preliminary discipline for it. It consisted of three parts:
Grammar, Dialectic, and Rhetoric, in that order.

Now the first thing we notice is that two at any rate of these “sub-
jects” are not what we should call “subjects” at all: they are only
methods of dealing with subjects. Grammar, indeed, is a “subject” in
the sense that it does mean definitely learning a language–at that pe-
riod it meant learning Latin. But language itself is simply the medium
in which thought is expressed. The whole of the Trivium was, in fact,
intended to teach the pupil the proper use of the tools of learning, be-
fore he began to apply them to “subjects” at all. First, he learned a
language; not just how to order a meal in a foreign language, but the
structure of a language, and hence of language itself–what it was, how
it was put together, and how it worked. Secondly, he learned how to
use language; how to define his terms and make accurate statements;
how to construct an argument and how to detect fallacies in argument.
Dialectic, that is to say, embraced Logic and Disputation. Thirdly, he
learned to express himself in language–how to say what he had to say
elegantly and persuasively.

The Bulletin of the EATCS

71

The Trivium taught students to think clearly, and enabled them to learn con-
crete subjects much more easily. Sayers argues further, that modern education
(in 1947) lost track of this idea, and tried to teach students as many subjects as
possible, instead of first teaching them how to think (and learn). She argues that
teaching the Trivium first would make it dramatically easier and more efficient to
learn any number of subjects later.

I wonder whether a modern-day equivalent of the Trivium would contain pro-
gramming, or maybe, more generally “computational thinking,” as one of its non-
subject subjects.

In any case, if programming is part of a new Trivium—of the set of subjects
that allow people to think clearly—then, obviously, everyone has to learn to pro-
gram. However, in this article I want to focus on Sussman’s somewhat related but
different reason for learning to program.

5 Reason 3: Programming to Learn
The third reason for teaching programming to everyone is to enable Sussman’s
view of using computer programming as a new pedagogical device. This is a very
concrete approach: if we are able to program, we can then teach other topics (like
biology) by modeling the phenomena of those topics using computer programs.

Thus, the reason for learning to program is to later enable us to program to
learn!

Note that I am not proposing that “programming to learn” would completely
replace existing pedagogical tools. In fact, programming an executable model
of some phenomenon may not be enough to fully understand that phenomenon.
For example, if a “programming to learn” activity already starts with a rather
complete specification of the phenomenon, a student may be able to implement a
working program in a somewhat mechanical way, without profoundly understand-
ing the deeper meaning of the specification or the phenomenon. Nevertheless, I
believe that “programming to learn” can greatly augment existing pedagogical
approaches.

I came up with the phrase “programming to learn” when reading Sussman’s
essay. I quickly discovered that others used it long before me. However, their
interpretations differ somewhat from Sussman’s idea.

5.1 Mendelsohn et al.’s Interpretation
Already in 1990, Mendelsohn et al. brought up that phrase in their book chapter
on “Programming Languages in Education: The Search for an Easy Start” [4].

BEATCS no 119

72

[...] as new languages have been developed, there has been much
discussion of whether the primary aim should be to teach children
programming for its own sake, or to use programming in the service
of some other end or discipline—“programming to learn, or learning
to program.”

Mendelsohn et al. look at the two phrases—“programming to learn” and
“learning to program”—as two mutually exclusive choices, as two different ways
of learning to program. They seem to regard “programming to learn” as a way
to learn to program in a meaningful context, where the programming language
“acts as a medium for the practicing of specific skills,” while they regard “learn-
ing to program” as a way to learn to program in a decontextualized way, where
the “programming language is above all a new language to be learnt.”

In Sussman’s view, “programming to learn” does not seem to include “learning
to program.” That is, students first learn to program, and, after that, they can use
the gained programming skills to use programming to learn.

5.2 Miller’s Interpretation
In his 2004 dissertation, “Promoting computer literacy through programming
Python,” [5] John Alexander Miller puts “programming to learn” in a more general
context:

• “learning to read” enables students to “read to learn”

• “learning to write” enables students to “write to learn”

• “learning computer literacy” enables students to “use computer literacy to
learn”

• “learning to program” enables students to “program to learn”

Miller’s work connects “programming to think” and “programming to learn.”
On one hand, he considers programming as a cross-cutting part of a new Trivium,
proposing to replace Latin with Python. This is more about acquiring computa-
tional thinking skills than learning to program to enable Sussman-style learning
experiences. On the other hand, Miller highlights the power of programs as “exe-
cutable notations” and concludes with:

[...] integrating programming into curricular activities may signif-
icantly alter what knowledge becomes important to learn in many of
the traditional subject areas, as well as how that knowledge is learned.

Sussman’s idea is exactly about using programming to alter how knowledge is
learned.

The Bulletin of the EATCS

73

5.3 Resnick’s Interpretation
In 2012, Mitchel Resnick, Professor of Learning Research at the MIT Media Lab,
gave a TED talk with the title “Let’s teach kids to code” [7], where he brought
up the phrase “Code to Learn.” He further elaborated the idea in a 2013 EdSurge
post titled “Learn to Code, Code to Learn” [8]. He argues that coding helps you
to learn how to: experiment with and communicate new ideas, take complex ideas
and break them down into simpler parts, collaborate with other people on your
projects, find and fix bugs when things go wrong, and keep persistent and perse-
vere in the face of frustration.

Resnick’s interpretation of “code to learn” seems to align with the second
reason: learning to code to help students to become more literate, critical thinkers
and creators. The skills he enumerates are helpful in many other contexts just
like the “thinking skills” my Latin teacher instilled are helpful in other contexts.
Resnick’s interpretation does not, however, directly and completely address the
third reason: learning to code to provide students with the means (coding) so they
can learn in the entirely new way described by Sussman.

5.4 Wenger’s Interpretation
In a 2012 blog post “Learning to Program, Programming to Learn” [10], Albert
Wenger writes:

Programming is “teaching” the computer how to do something. If
you can’t teach it to the computer you have probably not completely
understood it. Hence the “programming to learn” in the subject line
of this post.

He enumerates a set of school subjects in which he sees programming helping with
learning: History (programming animated maps and historical timelines), English
(programming word games), Music (programming music, sound, and visualiza-
tions thereof), Science (programming simulations), and Math (programmatically
illustrate the number line, connect algebra and geometry).

Wenger’s interpretation is very close to Sussman’s. While Sussman describes
the teacher writing a program for students to read, Wenger talks of the students
writing the program themselves. Wenger’s approach thus represents a more active
approach to learning and thus is more in line with modern pedagogy. Another dif-
ference is that Sussman focused on college-level courses, while Wenger discussed
using programming in school.

BEATCS no 119

74

5.5 Guzdial’s Interpretation
In his 2015 book on “Learner-centered design of computing education: research
on computing for everyone” [3], Mark Guzdial, a computing education professor
at the Georgia Institute of Technology, discusses a list of potential reasons for why
everyone should learn computing: jobs, learn about their world, computational
thinking, computational literacy, productivity, and to broaden participation.

Guzdial’s book is a treasure trove of information about studies on computing
education for everyone. Overall, Guzdial finds that what I call “computing to
think” is less promising, because there is no evidence that one can teach general,
transferable problem-solving or thinking skills by teaching programming. How-
ever, he argues and cites evidence that programming can be helpful in learning
subjects like mathematics, science, or engineering:

Writing a program to solve an engineering problem may give stu-
dents new insights into the engineering problem. Writing a program
to express an idea can transform how the programmer thinks about
that idea. This is not about transfer. This is about the power of using
a new medium, of applying computing to new domains.

This very much corresponds to Sussman’s “computing to learn” perspective.

6 Programming to Learn What?
I find that idea of “programming to learn,” in Sussman’s sense, extremely pow-
erful! And I realize that I and many of my colleagues have been applying that
idea in our courses for a long time: we have students implement a concept as a
program just so they will profoundly understand that concept.

Given that I teach concepts in computer science, the concepts I teach often
are methodological and amenable to modeling and implementation in code. For
example, I taught computer architecture by having students implement a simple
micro-architectural simulator. Or I teach version control by having students im-
plement a simplified simulator of Git. And who has ever taught compiler opti-
mization without having students implement at least parts of a compiler?

I wonder where the boundaries of this “programming to learn” approach lie.
Can you teach statistics this way, and how well can you do so? Biology? Econ-
omy? Psychology? Sociology? How about history, or natural languages? Car-
pentry? Plumbing? Or... art?

I bet the boundaries lie far beyond computer science. And I bet few non-
computer-scientists actually use a “programming to learn” approach. Sometimes
because they never learned to program. Other times because their students can’t
program.

The Bulletin of the EATCS

75

7 Do Not Neglect Learning to Program
Programming to learn might be the most important reason for learning to pro-
gram. However, in order to program to learn, we do have to learn to program. If
we single-mindedly focus on “programming to learn,” on how students can use
programming to learn other topics, and if programming disappears—or is never
introduced—as a curricular subject, then we risk that students will not learn the
foundational concepts underlying “programming.” As a result, they will not be
able to program to learn either.

This risk is not negligible. A similar phenomenon happened in Switzer-
land [2], when informatics was eliminated as a subject from the high school cur-
ricula, and instead was integrated into the various subjects in which it could be
applied. The result was that students did not really learn programming anymore,
but only learned how to use computers as end-users.

8 Conclusions
In order to program to learn, you first have to learn to program. So we have to
teach coding, or programming, to everyone! Not because they need to become
professional programmers. Not even because it improves their critical thinking
skills. But simply because it opens up a new, potentially powerful way of learning.
By reading and writing code.

Acknowledgements
In addition to thanking the authors of the inspiring works I cited, I would like to
thank all the colleagues who influenced my thinking about these ideas. Special
thanks go to Judi Fusco, Patti Schank, Shuchi Grover, and Jeremy Roschelle at
SRI International for the many insightful discussions about the learning sciences
and computer science education. However, the interpretations and opinions pre-
sented here are my own and may not necessarily represent those of my colleagues.

References
[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Computer

Programs. MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

[2] W. Gander. Informatics – new basic subject. In Bulletin of EATCS, number
116. European Association for Theoretical Computer Science, June 2015.

BEATCS no 119

76

[3] M. Guzdial. Learner-centered design of computing education: research on
computing for everyone. Morgan & Claypool Publishers, Nov. 2015.

[4] P. Mendelsohn, T. R. G. Green, and B. Paul. Programming languages in
education: The search for an easy start. In J.-M. Hoc, T. R. G. Green,
D. Gilmore, and R. Samway, editors, Psychology of Programming, chapter
2.5, pages 175–200. Academic Press, London, 1990.

[5] J. A. Miller. Promoting Computer Literacy Through Programming
Python. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 2004.
AAI3122001.

[6] National Research Council. Computer Science: Reflections on the Field,
Reflections from the Field. The National Academies Press, Washington, DC,
2004.

[7] M. Resnick. Let’s teach kids to code. TED Talks. http://www.ted.com/
talks/mitch_resnick_let_s_teach_kids_to_code, Nov. 2012.

[8] M. Resnick. Learn to code, code to learn. EdSurge. https://www.
edsurge.com/news/2013-05-08-learn-to-code-code-to-learn,
May 2013.

[9] D. L. Sayers. The lost tools of learning. Essay presented at Oxford Univer-
sity. http://www.gbt.org/text/sayers.html, 1947.

[10] A. Wenger. Learning to program, programming to learn.
Blog post. http://continuations.com/post/36062400780/
learning-to-program-programming-to-learn, Nov. 2012.

The Bulletin of the EATCS

77

78

The Bulletin of the EATCS

79

The Logic in Computer Science Column

by

Yuri Gurevich

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

BEATCS no 119

80

Fundamentals of p-values: Introduction

Yuri Gurevich
Microsoft Research

Vladimir Vovk
Royal Holloway

Abstract

We explain the concept of p-values presupposing only rudimentary prob-
ability theory. We also use the occasion to introduce the notion of p-function,
so that p-values are values of a p-function.

The explanation is restricted to the discrete case with no outcomes of
zero probability. We are going to address the general case elsewhere.

1 Prelude

Q1: I have a question about the Cournot Principle that one of you wrote about [3].
According to the principle, it is practically certain that a predicted event of small
probability does not happen. How small should the probability be?

A: Traditionally there have been two camps of naive Cournotians, the lax ones
using the 5% threshold and strict ones using the 1% threshold.

Q: Why do you call them naive?

A: A better way is to report an appropriate p-value, without committing yourself
to a threshold.

Q: Oh yes, I heard about p-values and even tried to read about them but got con-
fused. Do you have a good reference?

A: Cox and Hinkley define p-values, even though they do not use the term, in §3
of the their 1974 book “Theoretical Statistics” [2]. That is the best reference that
we have.

Q: How about explaining the concept to me right now? But please take into ac-
count that, while I have been exposed to probability theory and logic, I have not
studied statistics.

1Q and A are Quisani (a former student of the first author) and the authors respectively.

The Bulletin of the EATCS

81

A: The general case is somewhat involved [4], but the discrete case is important
and simple enough to explain the concept, especially if one presumes that every
outcome has positive probability.

2 Probability trials

Recall that a discrete probability space is given by a nonempty set Ω and a function
P from Ω to the real interval [0, 1] subject to the following three requirements.

1. Ω is countable, i.e. finite or infinite countable.

2. Every P(x) ≥ 0.

3.
∑

x∈Ω P(x) = 1.

To simplify our exposition, we replace (2) with a stronger and relatively innocuous
requirement

(2′) Every P(x) > 0.

The function P naturally extends to subsets E of Ω: P(E) =
∑
{P(x) : x ∈ E}.

Think of the probability space (Ω,P) as a probability trial. Elements of Ω are
outcomes, subsets of Ω are events, and P assigns probabilities to outcomes and
events. The probability distribution P is the null hypothesis of the trial. Think of
it as an alleged probability distribution. The purpose of the trial is to test P.

Q: I guess, a predicted event of small probability, if and when it occurs, provides
falsifying evidence against the null hypothesis.

A: Yes, but we do not need to define what probabilities count as small. For now,
it suffices to say this: The smaller the probability of the event in question, the
stronger the impugning power of the event. Suppose for example that Ω = {a, b, c}
and that P(a) = 990/1000, P(b) = 9/1000 and P(c) = 1/1000. We can order
the nonempty events in the order of increasing impugning power: {a, b, c}, {a, b},
{a, c}, {a}, {b, c}, {b}, {c}.

Q: But the event {a, b, c} has zero impugning power.

A: True, and we don’t say that it has any. We just say that its impugning power
is less than that of the other 6 events. Also, we ignore the empty event because it
does not occur.

BEATCS no 119

82

3 The logic angle

Q: For logicians, a discrete probabilistic trial (Ω,P) is a relatively simple logic
structure, an extension of real arithmetic with a separate sort Outcome and a func-
tion P of type
Outcome→ Real, subject to requirements (1)–(3) of §2.

A: In applications, a trial comes with additional information. Here are two exam-
ples, in a simplified form, from the paper you cited.

Coin Example. A coin is tossed 42 times. The null hypothesis is that all 242

outcomes are equally probable. The actual outcome has 41 heads and just one tail.
Clearly the impugning power of that outcome exceeds that of a random outcome.

Lottery Example. 4,000,000 people bought 10,000,000 tickets. Any of them could
be the winner; thus these are 4,000,000 potential outcomes. The null hypothesis
is that the probability of a person to win is proportional to the number of his or her
tickets. The wife Donna of the lottery organizer John bought 3 tickets and won the
lottery. Clearly the impugning power of that outcome exceeds that of a random
outcome.

Q: Additional information complicates the matter. Clearly there are countless dif-
ferent kinds of additional information. How do statisticians deal with them?

A: They simplify the situation. They replace any additional structure with a linear
preorder of the outcomes and restrict attention to the downward closed events.

Q: This is quite a simplification!

A: Often the linear preorder is given implicitly, by means of a test statistic or a
nested family of events.

Q: Please remind me the necessary definitions.

4 Test tools

Let (Ω,P) be a probability trial. A preorder of a nonempty set Ω is a binary
relation ≤ on Ω that is reflexive and transitive so that for all outcomes x, y, z we
have

• x ≤ x and

• if x ≤ y and y ≤ z then x ≤ z.

The Bulletin of the EATCS

83

A preorder ≤ of Ω is linear if for all x, y we have

• x ≤ y or y ≤ x.

Definition 1.

• A test order of Ω is a linear preorder on Ω.

• A test pyramid over Ω is a family of events linearly ordered by inclusion.

• A test statistic on Ω is a function from Ω to the reals.

Coin Example, continued. Let Heads (x) and Tails (x) be the numbers of
the heads and tails in an outcome x respectively. The function M(x) =

Min {Heads (x),Tails (x)} is a test statistic. The relation M(x) ≤ M(y) is a lin-
ear preorder of the outcomes. Events {x : M(x) ≤ n}, where n ∈ {0, 1, . . . , 42}
form a test pyramid.

Given a linear preorder ≤ on Ω, an event E ⊆ Ω is downward closed if x ≤ y
and y ∈ E imply x ∈ E for all x, y. The downward closed events are nested: if
E1, E2 are downward closed then either E1 ⊆ E2 or E2 ⊆ E1. Indeed if E2 * E1

and x ∈ E2 − E1 then E1 ⊆ {y : y ≤ x} ⊆ E2.

Note that there may be distinct outcomes x, y with x ≤ y and y ≤ x; such
outcomes x, y are quasi-equal. Linear preorders are also known as linear quasi-
orders.

Test orders, test pyramids and test statistics are three tools to measure the
relative strength of the impugning evidence provided by a given outcome or event.
We adopt the following convention.

- For a given test order, smaller outcomes provide stronger impugning evi-
dence.

- For a given test statistic, smaller values provide stronger impugning evi-
dence.

And of course, for a given test pyramid of events, smaller events provide stronger
impugning evidence.

In the following two sections we show that the three tools are equivalent in an
appropriate sense.

BEATCS no 119

84

5 Test orders and test pyramids

If ≤ is a test order, let [≤ x] be the downward closure {y : y ≤ x} of x.

Definition 2.

• Every test order ≤ induces a test pyramid, namely the family of events [≤ x].

• Every test pyramid F induces a test order

{(x, y) : (∀E ∈ F)[y ∈ E =⇒ x ∈ E]}

In words, the formula (∀E ∈ F)[y ∈ E =⇒ x ∈ E] says that every member
of F that contains y contains x as well.

Lemma 3. If a test order ≤ induces a test pyramid F then F induces ≤.

Proof. Let � be the test order induced by F .

x � y ⇐⇒ (∀E ∈ F)[y ∈ E =⇒ x ∈ E] by the definition of x � y
⇐⇒ (∀z ∈ Ω)[y ∈ [≤ z] =⇒ x ∈ [≤ z]] by the definition of F
⇐⇒ x ∈ [≤ y]
⇐⇒ x ≤ y �

Definition 4.

• Two test pyramids are equivalent if they induce the same test order.

• The canonic version F̂ of a test pyramid F is the test pyramid induced by
the test order induced by F .

• A test pyramid F is canonic if it is the canonic version of itself.

Q: Show me a non-canonic test pyramid.

A: Let Ω be the set of numbers ±1
n where n = 1, 2, The precise definition of

the distribution P on Ω is not important provided that every element of Ω has a
positive probability. Let ≤ be the standard order on the numbers ±1

n . The desired
test pyramid F is the collection of all subsets of Ω downward closed with respect
to ≤. Clearly F induces the test order ≤. The pyramid F̂ , induced by ≤, consists
of sets [≤ x] where x ∈ Ω. It is a proper subcollection of F . The difference F −F̂
consists of three sets: ∅, [≤ 0] and Ω.

Q: You could have require that a test order ≤ induces the pyramid of all the events
downward closed with respect to ≤. Then your counter-example would not work.

The Bulletin of the EATCS

85

A: That is true. But then a non-canonic pyramid would be obtained from the
pyramid of downward-closed events by omitting one or more of the sets ∅, [≤ 0],
Ω.

Q: What about canonic test orders?

A: In our current setup every test order can be viewed as canonic. We saw already
that every test order is induced by a test pyramid. We’ll see below that every test
order is induced by a test statistic. This is not so in the general case. In fact, it is
not so even in the discrete case with outcomes of zero probability.

Lemma 5. Every pyramid F is equivalent to a unique canonic test pyramid,
namely to F̂ .

Proof. Let ≤ be the test order induced by F . By the definition, F̂ is the collection
of events [≤ x]. Clearly F̂ induces ≤, and so it is equivalent to F .

It remains to check that F̂ is the only canonic test pyramid equivalent to F .
Let F ′ be a canonic test pyramid that is equivalent to F and therefore induces ≤.
Since F ′ is canonic, it is induced by ≤. But then F ′ = F̂ . �

Corollary 6.

1. If a test pyramidF induces a test order ≤ then ≤ induces the canonic version
F̂ of F .

2. If a test order ≤ induces a test pyramid F then F is canonic.

Proof. (1) By the definition of F̂ .

(2) By Lemma 3, F induces ≤. By (1), F = F̂ . �

6 Test orders and test statistics

Definition 7.

• Every test order ≤ induces a test statistic f (x) = P[≤ x].

• Every test statistic f induces a test order {(x, y) : f (x) ≤ f (y)}.

For a test statistics f and a real number r, let [f ≤ r] be the event {x : f (x) ≤
r}. In the following lemma, we take advantage of having no zero-probability
outcomes.

BEATCS no 119

86

Lemma 8. For any test order ≤, we have x ≤ y if and only if P[≤ x] ≤ P[≤ y].

Proof. If x ≤ y then [≤ x] ⊆ [≤ y] and therefore P[≤ x] ≤ P[≤ y]. This establishes
the only-if implication. We prove the if implication by contrapositive. Suppose
that x > y. Then x belongs to [≤ x] but not to [≤ y] so that [≤ x]) [≤ y]. Since
P(x) > 0, we have P[≤ x] > P[≤ y]. �

Lemma 9. For any test statistic f , we have:

1. If f induces a test order ≤ then every [≤ x] = [f ≤ f (x)].

2. f (x) ≤ f (y) ⇐⇒ P[f ≤ f (x)] ≤ P[f ≤ f (y)].

Proof.

(1) [≤ x] = {y : y ≤ x} = {y : f (y) ≤ f (x)} = [f ≤ f (x)].

(2) Follows from (1) and Lemma 8. �

Lemma 10. If a test order ≤ induces a test statistic f then f induces ≤.

Proof. Let � be the test order induced by f .

x ≤ y ⇐⇒ P[≤ x] ≤ P[≤ y] by Lemma 8,
⇐⇒ f (x) ≤ f (y) by the definition of f ,
⇐⇒ x � y by the definition of �. �

Definition 11.

• Two test statistics are equivalent if they induce the same test order.

• The canonic version of a test statistic f is the test statistic
f̂ (x) = P[f ≤ f (x)].

• A test statistic is canonic if it is the canonic version of itself.

Lemma 12. Every test statistic f is equivalent to a unique canonic test statistics,
namely to f̂ .

Proof. First we check that f is equivalent to f̂ .

f (x) ≤ f (y) ⇐⇒ P[f ≤ f (x)] ≤ P[f ≤ f (y)] by Lemma 9,

⇐⇒ f̂ (x) ≤ f̂ (y) by the definition of f̂ .

The Bulletin of the EATCS

87

Second we check that f̂ is the only canonic test statistic equivalent to f . If f ′ is a
canonic test statistic equivalent to f then

f ′(x) ≤ f ′(y) ⇐⇒ f (x) ≤ f (y) because f and f ′ are equivalent,

⇐⇒ f̂ (x) ≤ f̂ (y) because f and f̂ are equivalent.

Thus f ′, f̂ and f are all equivalent and therefore induce the same order ≤.

f ′(x) = P[f ′ ≤ f ′(x)] as f ′ is canonic
= P[≤ x] by Lemma 8, part 1

= P[f̂ ≤ f̂ (x)] by Lemma 8, part 1

= f̂ (x) as f̂ is canonic. �

Corollary 13.

• If a test statistic f induces a test order ≤ then ≤ induces the canonic version
f̂ of f .

• The test statistic induced by any test order is canonic.

Proof.

(1) Let f ′ be the test statistic induced by ≤. We have

f ′(x) = P[≤ x] by the definition of f ′,
= P[f ≤ f (x)] by Lemma 9,

= f̂ (x) by the definition of f̂ .

(2) Let f be the test statistic induced by a given test order ≤. By Lemma 10, f
induces ≤. By (1), f = f̂ . �

7 Exact p-values

In this section we define exact p-values. A more general notion of p-value will be
given in the next section.

Definition 14. Given a probabilistic trial (Ω,P) furnished with a test order ≤, the
exact p-value of an outcome x is the probability P[≤ x].

BEATCS no 119

88

Notice the dependence on the test order. Of course, the test order can be given
by means a test pyramid or test statistic. Test statistics are especially popular
in applications. In this connection, let us give an alternative definition of exact
p-values.

Definition 15. Given a probabilistic trial (Ω,P) furnished with a test statistic f ,
the exact p-value of an outcome x is the number f̂ (x) = P[f ≤ f (x)].

Of course the two definitions are consistent.

Lemma 16.

1. If a test statistic f induces a test order ≤ then P[≤ x] = P[f ≤ f (x)].

2. If a test order ≤ induces a test statistic f then P[f ≤ f (x)] = P[≤ x].

Proof. (1) Use Lemma 9, part 1.

(2) By Lemma 10, f induces ≤. Now use (1). �

Q: Let’s go back to the two examples of §3, compute the exact p-values of the
actual outcomes and compare them.

A: The examples do not have sufficient information. We need to furnish them
with reasonable test tools. For the Coin Example, we can use the test statistic
M(x) = Min {Heads (x),Tails (x)} defined in the continuation of the Coin Example
in §4. With respect to that test statistic, the exact p-value p1 of the actual outcome
is as follows.

p1 = P[f ≤ 1] =
2(1 + 42)

242 <
2 × 26

242 = 2−35

Concerning the Lottery Example, one possible approach is given by the fol-
lowing graph G.

• The vertices of G are the 4,000,000 lottery participants plus John, the lottery
organizer, whether he bought any lottery tickets or not.

• Two distinct vertices X and Y are connected by an edge in G if and only if
at least one of the following conditions holds:

– X is a parent of Y or the other way round.

– X,Y are spouses.

– X,Y are close friends.

The Bulletin of the EATCS

89

Given the graph G, we have a natural test statistic δ(X) on the lottery participants,
namely the length of the minimal chain of edges from John to X. If John bought
at least one ticket then the minimal value of δ is 0; otherwise it is one. Donna,
John’s wife, is at distance 1 from John, and she bought 4 tickets. We can estimate
the exact p-value p2 of the actual outcome from below.

p2 = P(δ ≤ 1) ≥
4

10, 000, 000
>

22

24 × 210 × 210 = 2−22.

It follows that
p1 < 2−35 < 2−22 < p2.

Q: This is interesting. The win of the lottery organizer’s wife seemed more striking
to me than getting 41 heads in 42 coin tosses. I wonder whether p2 is small enough
to impugn the hypothesis that the lottery was fair.

A: Well, it seems safe to assume that the lottery participants at distance ≤ 1 from
John bought less than 10,000 tickets. Under this assumption,

p2 <
10, 000

10, 000, 000
=

1
1000

= 0.1%

which is small enough for the lax as well as strict Cournotians.

8 p-functions

In this section ε ranges over the non-negative reals.

Lemma 17. Let f be a canonic test statistic.

1. P[f ≤ ε] = ε if ε ∈ Range(f).

2. P[f ≤ ε] = ε if ε = sup(S) for some S ⊆ Range(f).

3. P[f ≤ ε] ≤ ε for every ε.

Proof. (1) If ε = f (x) then

P[f ≤ ε] = P[f ≤ f (x)]
= f (x) as f is canonic
= ε

BEATCS no 119

90

(2) If ε = sup(S) for some S ⊆ Range(f) then there is a sequence s1 < s2 < . . .
of elements of S converging to ε. Then

P[f ≤ ε] = P[f ≤ s1] + P[s1 < f ≤ s2] + P[s2 < f ≤ s3] + · · ·

so that the probability

P[f ≤ sn] = P[f ≤ s1] + P[s1 < f ≤ s2] + · · · + P[sn−1 < f ≤ sn]

converges to P[f ≤ ε] as n→ ∞. Therefore

P[f ≤ ε] = lim
n→∞

P[f ≤ sn]

= lim
n→∞

sn by (2)

= ε by the choice of s1 < s2 <

(3) Let ε0 = sup{s ∈ Range(f) : s ≤ ε}. Then [f ≤ ε] = [f ≤ ε0] and therefore
P[f ≤ ε] = P[f ≤ ε0] = ε0 ≤ ε. �

Definition 18.

• A p-function is a test statistic f such that P[f ≤ ε] ≤ ε for every ε.

• A p-function f is exact if P[f ≤ ε] = ε for every ε ∈ Range(f); otherwise
f is conservative.

• Values of a p-function are p-values.
If f is a p-function then c f is a p-function for every c ≥ 1. Indeed

P[c f ≤ ε] = P[f ≤ ε/c] ≤ ε/c ≤ ε.

If c < 1 then c f may not be a p-function. In particular if P[f ≤ ε] = ε for at least
one ε then c f is not a p-function because, for that ε, we have

P[c f ≤ cε] = P[f ≤ ε] = ε > cε.

Theorem 19. For any test statistic f , the following two claims are equivalent:

1. f is canonic.

2. f is an exact p-function.

The Bulletin of the EATCS

91

Proof. The implication (1)→(2) is proven in Lemma 17. To prove the implication
(2)→(1), assume that f is an exact p-function, x is an arbitrary outcome and ε =

f (x). We have

P[f ≤ f (x)] = P[f ≤ ε]
= ε as f is exact
= f (x). �

Corollary 20. • Exact p-values are values of a exact p-function.

• Every test order induces a unique exact p-function.

• Every test statistic f is equivalent to a unique exact p-function.

9 Data snooping

Q: What about conservative p-functions? Do you really have any use for them?

A: Yes. A good example is the so-called Bonferroni correction. There is a good
explanation in [1].

Q: But what is the idea?

A: Consider a version of our coin example where, for simplicity, you toss a coin
only 15 times. Again the null hypothesis is that all outcomes are equally probable,
and again we will use the test statistic M(x) = Min{Heads(x),Tails(x)}. Suppose
that you really want to impugn the null hypothesis. So you repeat the trial over
and over until you encounter an outcome where M is 1. At this point, you report
that you performed a trial and got an outcome with p-value

P[M ≤ 1] =
2(1 + 15)

215 =
25

215 = 2−10 =
1

1024
.

Q: But this is cheating.

A: Exactly. Yet, such data snooping occurs in science though rarely in such a
blatant form; a scientist may genuinely forget about some steps in the preliminary
analysis of data. In this connection, you may enjoy a relevant issue [6] of the
XKCD webcomic.

Q: I remember hearing about publication bias. What is it?

BEATCS no 119

92

A: It is a rather insidious kind of data snooping. Imagine that a large number of
groups of scientists are testing an important null hypothesis. Eventually some
group gets a significant p-value and submits their findings for publication while
the other groups don’t publish anything on the issue. Some influential statisticians
argue that most published research findings are wrong and that publication bias
may be the main reason for that [5].

Q: You cannot avoid multiple testing of a null hypothesis. What do you do?

A: Consider a case where the same probabilistic trial is performed n times, using
test statistics f1, . . . , fn and getting p-values p1, . . . , pn. Of course one would love
to report the p-value min{p1, . . . , pn} but it needs to be adjusted for the multiple
testing of the null hypothesis. The Bonferroni correction is one way to adjust that
p-value, by multiplying it by n. The p-value n · min{p1, . . . , pn} is valid though
usually conservative. More exactly the test statistic f = n min(f1, . . . , fn) is a
p-function, typically conservative. Indeed,

P[f ≤ ε] ≤ P
(
∪n

i=1 [fi ≤ ε/n]
)
≤

n∑
i=1

P[fi ≤ ε/n] ≤
n∑

i=1

ε/n = ε.

Acknowledgments

We thank Andreas Blass for useful comments on a draft of this paper.

References

[1] Hervé Abdi, “Bonferroni and Šidák corrections for multiple comparisons,”
http://www.utdallas.edu/~herve/Abdi-Bonferroni2007-pretty.pdf,
accessed January 8, 2016. Appeared in N. J. Salkind (ed.), Encyclopedia of Mea-
surement and Statistics, Sage Publications, 2007.

[2] D. R. Cox and D. V. Hinkley, “Theoretical Statistics,” Chapman & Hall, 1974.

[3] Yuri Gurevich and Grant O. Passmore, “Impugning Randomness, Convincingly,”
Bulletin of EATCS 104, June 2011; also — with an added Prologue — in Studia
Logica 82 (2012), 1–31.

[4] Yuri Gurevich and Vladimir Vovk, “Fundamentals of p-values,” unpublished
manuscript.

[5] John P. A. Ioannidis, “Why Most Published Research Findings Are False”, PLoS
Medicine, Volume 2, Issue 8, e124, August 2005.

[6] XKCD, http://xkcd.com/882/, accessed on Jan. 8, 2016.

BEATCS no 119

94

News and Conference
Reports

The Bulletin of the EATCS

97

Report on BCTCS 2016

The 32nd British Colloquium for Theoretical Computer Science

22–24 March 2016, Queen’s University Belfast

Amitabh Trehan

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum in which researchers in Theoretical Computer Science can meet, present
research findings, and discuss developments in the field. It also provides an envi-
ronment for PhD students to gain experience in presenting their work in a wider
context, and to benefit from contact with established researchers.

BCTCS 2016 was hosted by Queen’s University Belfast (QUB), and held from
22nd to 24th March, 2016. The event attracted over 30 participants, and featured
an interesting and wide-ranging programme of six invited talks and 20 contributed
talks. Abstracts for all of the talks from BCTCS 2015 are provided below. We are
particularly thankful to the Heilbronn Institute for Mathematical Research who
provided bursaries for 7 PhD students (including 2 female students). The many
(sponsored and non-sponsored) PhD students ensured enthusiastic participation
and talks over a wide range of research areas. QUB generously provided free
use of the venue, the newly opened and redesigned Graduate School, to promote
learning among graduate students. We are also thankful to the London Maths
Society (LMS) for their annual sponsorship of the LMS keynote speaker in Discrete
Maths - Prof. Valerie King (University of Victoria, Canada).

The talks covered a wide range of topics in TCS and there was global partici-
pation ranging from Canada, USA, Turkey, Iceland, the UK, of course, and the re-
public of Ireland. The opening talk was given by Matthew Hennessy (Trinity Col-
lege Dublin). Matthew gave an overview of recent research in transactional dis-
tributed systems outlining semantic theories for process calculus for co-operating
transactions. Michael Butler (Southampton) continued the theme in the afternoon
with a talk on Event Refinement Structures (ERS) for the Event-B formal method.

Wednesday began with an interesting talk by Magnus M Halldórsson (Reyk-
javik University) on the philosophical and practical questions involving choosing
the right problems to work on continuing with his recent results involving schedul-
ing problems arising from wireless networks. The morning continued with Gre-
gory Chockler (Royal Holloway) talking about using erasure codes with replica-
tion for reliable storage in asynchronous distributed systems. In the pre-lunch ses-
sion, Bhaskar DasGupta (University of Illinois, Chicago, USA) gave a talk featur-
ing non-trivial bounds on node expansions and cut-sizes for Gromov-hyperbolic
graphs (or, hyperbolic graphs for short).

BEATCS no 119

98

The session continued with a talk from our LMS keynote speaker, Valerie
King. Valerie is an ACM fellow who is well known for her work on algorithms
(in particular, dynamic and distributed algorithms). Valerie with Jared Saia (Uni-
versity of New Mexico) and others have made extensive and fundamental ad-
vances in solving the very important problem of Byzantine agreement. They have
used a number of innovative techniques including spectral methods for achieving
their results. In her talk, she described work on efficient algorithms for Byzantine
agreement without secrecy by making connections with a new collective coin flip-
ping problem. The afternoon also featured a stroll to the nearby Botanic gardens
and the Ulster museum.

The final day began with another interesting talk- by Bruce Kapron (University
of Victoria, Canada) on Gambling, information and encryption security. The talk
featured many animated race horses, Yao’s question (1982)- can encryption secu-
rity may be characterized using computational information? His talk would have
probably benefited many bookies before the Grand National. Cassio D. Campos
(QUB) gave a talk on Inferential Complexity in Probabilistic Graphical Models
which should probably have featured on day one considering the excellent intro-
duction to Belfast that it gave! The final invited speaker was Robert Giles (Eco-
nomics, QUB) who gave a talk on the underlying game theoretic concepts behind
consent in network formation, an area in which he has extensive experience.

BCTCS 2017 will be hosted by St Andrews University, Researchers and PhD
students wishing to contribute talks concerning any aspect of Theoretical Com-
puter Science are cordially invited to do so. Further details are available from the
BCTCS website at www.bctcs.ac.uk.

Invited Talks at BCTCS 2016
Michael J Butler (Southampton University)
Verification Patterns for Refinement
Event-B is a general purpose refinement-oriented formal method. Event Refine-
ment Structures (ERS) provide additional structure for refining Event-B mod-
els, in particular, for refining course-grained atomicity to fine-grained atomic-
ity when reasoning about concurrent and distributed systems. This talk presents
specification-oriented patterns for ERS refinement and verification. A specification-
oriented pattern is determined by the shape of the problem description rather than
the solution description.

Robert Giles (Queen’s University Belfast)
Consent in Network Formation: Game Theoretic Solutions
We consider the formation of networks under the principle of mutual consent and
costly link formation. This problem has attracted considerable game theoretic

The Bulletin of the EATCS

99

analysis that we survey in this presentation. First, we consider link-based stabil-
ity concepts founded on the seminal work by Jackson and Wolinsky (1996). In
particular, we survey some refinements of pairwise stability notions in the con-
text of costly link formation. Second, we look at non-cooperative game theoretic
analysis of consent in link formation known as the Myerson network formation
game. The deficiency of the Nash equilibrium concept is shown. Instead a belief-
based equilibrium concept, known as a self-confirming equilibrium, is explored to
model meaningful network formation in this context. An equivalence with strictly
pairwise stable networks is shown. Finally, we explore the role of correlations of
payoff functions through the notion of a potential. If network payoffs admit a po-
tential function, dynamic network formation algorithms can be devised that con-
verge to strictly pairwise stable networks that are supported as a self-confirming
monadic equilibrium in the standard Myerson network formation game.

Magnus M Hallsdórsson (Rejkjavik University)
“What problem should I solve?” and Efficiency in Wireless Networks
The selection of topic to work on is perhaps the most important aspect of research,
and one fraught with pitfalls. When we determine significance of a problem from
the “importance in applications”, it is important to understand the assumptions un-
derlying the formulations, since all abstractions leak somewhere. We ponder these
issues while examining recent progress in scheduling problems underlying wire-
less networking. The modeling of reality, in this case “interference”, is crucial.
Simple abstractions can be valuable, as long as we are aware of their limitations.
This brings up the issue of wider interest: how well can simpler abstractions ap-
proximate more detailed/complex ones?

Matthew Hennessy (Trinity College Dublin)
Behavioural Theories for Co-operating Transactions
Relaxing the isolation requirements on transactions leads to systems in which
transactions can co-operate to achieve distributed goals. However in the absence
of isolation it is not easy to understand the desired behaviour of transactional
systems, or the extent to which the other standard ACID properties of transac-
tions can be maintained: atomicity, consistency and durability. In this talk I
give an overview of some recent research in this area, outlining semantic theo-
ries for a process calculus augmented by a new construct for co-operating trans-
actions. In particular I focus on property logics which can be used to distinguish
behaviourally between such transactions.

Bruce Kapron (University of Victoria, Canada)
Gambling, Computational Information and Encryption Security
We revisit the question, originally posed by Yao (1982), of whether encryption

BEATCS no 119

100

security may be characterized using computational information. Yao provided an
affirmative answer, using a compression-based notion of computational informa-
tion to give a characterization equivalent to the standard computational notion of
semantic security. We give two other equivalent characterizations. The first uses
a computational formulation of Kelly’s (1957) model for “gambling with inside
information”, leading to an encryption notion which is similar to Yao’s but where
encrypted data is used by an adversary to place bets maximizing the rate of growth
of his wealth over a sequence of independent, identically distributed events. The
difficulty of this gambling task is closely related to Vadhan and Zheng’s (2011)
notion of KL-hardness, a form of which is equivalent to a conditional form of the
pseudoentropy introduced by Håstad et. al. (1999). Using techniques introduced
to prove this equivalence, we also give a characterization of encryption security in
terms of conditional pseudoentropy. Finally, we reconsider the gambling model
with respect to adversaries with linear utility in an attempt to understand whether
assumptions about the rationality of adversaries may impact the level of security
achieved by an encryption scheme. (Joint work with Mohammad Hajiabadi.)

Valerie King (University of Victoria, Canada)
Tossing a Collective Coin and Coming to Agreement
Over 35 years ago, Leslie Lamport formulated a fundamental problem of coordi-
nation in a distributed network. He asked us to imagine an army led by generals,
who send messages to each other with the goal of coming to agreement on a strat-
egy. Planted among those generals are spies who seek to thwart this goal. Not long
after this Byzantine agreement problem was presented, there were a few develop-
ments: an impossibility for any deterministic scheme, a randomized exponential
time algorithm, and a demonstration that one globally known coin toss could solve
the problem in constant expected time.

Some researchers turned to the use of committed secret coinflips via cryp-
tography, while others turned to the study of collective coin flipping with full
information. Recently, the need for Byzantine agreement without the overhead of
cryptographic techniques has arisen in decentralized digital currency systems.

I will describe joint work with Jared Saia and others on efficient algorithms
for Byzantine agreement without secrecy, including the first polynomial time al-
gorithm for this problem in a fully asynchronous model, which is obtained by
solving a new collective coin flipping problem.

Contributed Talks at BCTCS 2016
Athraa Al-Krizi (University of Liverpool)
Probabilistic Model Checking of One-Dimensional Nano Communication Sys-
tem

The Bulletin of the EATCS

101

Molecular communication is a bio-inspired paradigm in which molecules are
transmitted, propagated and received between nanoscale machines. Establish-
ing controlled molecular transmissions between theses nanomachines represents
a major challenge. Many studies have aimed to model the physical medium (chan-
nel) of molecular communication, primarily from a communication or information-
theoretical perspective.

In this talk we model a simple time-slotted communication system between
nanoscale machines in a one-dimensional environment. This communication sys-
tem employs some bio-inspired rules that can be checked at each interval. The sys-
tem model has been verified using the probabilistic model checking tool PRISM
on different sized networks. We were able to verify that acknowledgement has
been obtained, and thus, communication between these nanonodes has been as-
certained. The results were promising for further study of more complex scenarios
such as multi-access channels.

Thomas van Binsbergen (Royal Holloway, University of London)
Executable Component-Based Semantics
To improve the practicality of formal semantic definitions, the PLanCompS project
has developed a component-based approach. In this approach, the semantics of a
language is defined by translating its constructs to combinations of so-called fun-
damental constructs, or ‘funcons’. Each funcon is defined using a modular variant
of structural operational semantics, and forms a language-independent component
that can be reused in definitions of different languages.

For specifying component-based semantics, we have designed and implemented
a meta-language called CBS. CBS includes specification of abstract syntax, of its
translation to funcons, and of the funcons themselves. In this talk we discuss the
compilation of CBS funcon specifications to Haskell code. In particular, we shall
discuss how modularity is obtained in Haskell definitions of funcons.

Joshua Blinkhorn (University of Leeds)
Dependency Schemes: Semantics and Soundness in QBF Calculi
The tremendous success of SAT solvers in recent years has lead to a natural exten-
sion to quantified Boolean formula (QBF) solving. Whereas SAT is the canonical
NP-complete decision problem, deciding QBF is PSPACE-complete, and captures
the problem of determining winning strategies in two-player games with perfect
information. This semantic interpretation is central to the recent methods for prov-
ing lower bounds via the strategy extraction paradigm.

The linear ordering of a QBF’s quantifier prefix imposes a trivial “dependency
structure” upon its variables which, unfortunately, identifies dependencies which
are not essential for particular instances. A dependency scheme is an algorithm
which attempts to identify such spurious dependencies directly from the syntactic

BEATCS no 119

102

form of an instance; the results are used in state-of-the-art QBF solving to opti-
mise performance. Since every unsuccessful run of a solver provides a proof of
falsity, this raises questions about the underlying dependency proof systems: What
is their proof complexity relative to other QBF calculi? For which dependency
schemes are the underlying proof systems sound? Is strategy extraction possible?
The suggestion also arises to implement dependency schemes in stronger calculi,
for example in the QBF analogue of propositional Frege systems. Employing a
semantic framework, the talk will present some new results, targeting an improved
understanding of variable dependency in QBF calculi.

Michele Bottone (University of Middlesex)
The Agoric Process
Many phenomena can be viewed as systems arising from the interactions of agents,
where an important aspect is computation, defined as the abstract representation
of a process in terms of states and transitions. Such computational systems have
the ability to share information and allocate resources and to parcel the compu-
tation in efficient ways through some form of signalling; they also occur in dy-
namically changing environments with asynchronous and unpredictable changes,
including the possibility of new agents entering the system or leaving it. This
basic infrastructure of open systems shares many similarities with a marketplace,
where a collection of agents meet to exchange things of value to its participants.
We use the term “agoric processes” to capture the mathematical essence of such
information-processing mechanisms.

In this talk, I argue that the rise of connected and autonomous systems provides
a useful backdrop both for experimentation and attaining a mathematical theory of
distributed computation, and present a formalisation of the intuitive notion of an
agoric process as a computational object living on some graph structure together
with information flows. In this setting, information is an equivalence class of all
ways of describing the same information possessed by agents, and one can use
the Rota-Wallstrom theory of integration of functions indexed by set partitions to
represent higher-level concepts.

Cassio P De Campos (Queen’s University Belfast)
Inferential Complexity in Probabilistic Graphical Models
Computations such as evaluating posterior probability distributions and finding
joint value assignments with maximum posterior probability are of great impor-
tance in practical applications of probabilistic graphical models. These compu-
tations, however, are intractable in general, both when the results are computed
exactly and when they are approximated. In order to successfully apply proba-
bilistic graphical models in practical situations, it is crucial to understand what
does and what does not make such computations hard. In this talk we guide the

The Bulletin of the EATCS

103

audience through some of the most important computational complexity proofs
and give insights about the boundary between tractable and intractable.

Gregory Chockler (Royal Holloway, University of London)
Space Bounds for Reliable Storage: Fundamental Limits of Coding
We study the space requirements of reliable storage algorithms in asynchronous
distributed systems. A series of recent works have advocated using coding-based
techniques (and in particular, erasure codes) as a way of reducing space overheads
incurred by the standard replication approaches. However, a closer look reveals
that they incur extra costs in certain scenarios. Specifically, if multiple clients ac-
cess the storage concurrently, then existing asynchronous code-based algorithms
may store a number of copies of the data that grows linearly with the number
of concurrent clients. We establish a lower bound showing that this limitation
is indeed inherent. We also present a reliable storage algorithm with matching
space complexity thus proving that our bound is tight. Our algorithm is based
on a new technique combining erasure codes with replication so as to obtain the
best of both. I will start by introducing and motivating the problem, followed by
an overview of the key ideas and techniques behind our results. (Joint work with
Yuval Cassuto, Idit Keidar and Alexander Spiegelman.)

Bhaskar DasGupta (University of Illinois, USA)
Node Expansions and Cuts in Gromov-hyperbolic Graphs
Gromov-hyperbolic graphs (or, hyperbolic graphs for short) represent an interest-
ing class of “non-expander” graphs. Originally conceived by Gromov in 1987
in a different context while studying fundamental groups of a Riemann surface,
the hyperbolicity measure for graphs has recently been a quite popular measure
in the network science community in quantifying “curvature” and “closeness to
a tree topology” for a given network, and many real-world networks have been
empirically observed to be hyperbolic.

In this talk, we give constructive non-trivial bounds on node expansions and
cut-sizes for hyperbolic graphs, and show that witnesses for such non-expansion
or cut-size can in fact be computed in polynomial time. We also provide some
algorithmic consequences of these bounds and their related proof techniques for a
few problems related to cuts and paths for hyperbolic graphs, such as the existence
of a large family of s-t cuts with small number of cut-edges when s and t are
at least logarithmically far apart, efficient approximation of hitting sets of size-
constrained cuts, and a polynomial-time solution for a type of small-set expansion
problem originally proposed by Arora, Barak and Steurer.

Colm Ó Dúnlaing (Trinity College Dublin)
An almost-confluent congruential language which is not Church-Rosser con-

BEATCS no 119

104

gruential
It is fairly easy to show that every regular set is an almost-confluent congruen-
tial language (ACCL), and Diekert et al (2015) showed that every regular set is a
Church-Rosser congruential language (CRCL). The existence of an ACCL which
is not a CRCL remained an open question. In this talk we present one such ACCL.

Marie Farrel (Maynooth University, Ireland)
A Logical Framework for Integrating Software Models via Refinement
Modern software development focuses on model-driven engineering: the con-
struction, maintenance and integration of software models, ranging from formal
design documents through to program code. We frequently model software at dif-
ferent levels of abstraction, starting with a very high level abstract specification
and finishing with a detailed concrete implementation. In formal software engi-
neering we can map between these levels of abstraction in a verifiable way through
a process known as refinement. The question is how to combine information from
models which focus on different aspects of the software system.

The theory of institutions observes that once the syntax and semantics of a
formal system have been defined in a uniform way, a set of specification building
operators can be defined that allow you to write, modularise and build up spec-
ifications that can be defined in a formalism-independent manner. Event-B is a
formal specification language that enables the user to prove safety properties of
a specification. It facilitates the modelling of systems at different levels of ab-
straction through the verifiable process of refinement. Our goal is to represent the
Event-B formalism in terms of institutions and provide modularisation constructs
which increase the scalability of Event-B for use in larger projects. A benefit of
this approach is the increased interoperabilty of Event-B via institution comor-
phisms to allow aspects of the system to be specified in different formalisms and
included in the final Event-B specification.

Andrew Healy (Maynooth University, Ireland)
Evaluating SMT solvers for software verification
SMT (Satisfiability Modulo Theories) solvers are an important component in de-
ductive software verification systems. Such systems usually differ greatly in terms
of specification language and approach to intermediate verification condition gen-
eration. This variety hinders the development of a common benchmark suite and
makes the comparative evaluation of verification systems difficult. By using a
large benchmark suite designed to test the capabilities of SMT solvers beyond
software verification (in problem domains such as operations research and cryp-
tology, for example), we aim to identify a subset of the large benchmark suite
that can be used as a surrogate suite for software verification projects. We use

The Bulletin of the EATCS

105

dynamic profiling to obtain a feature vector that characterises the workload of the
solver before using techniques from cluster analysis to form new suites based on
the observed behaviour of the solver under a verification workload.

We present the workflow and results of this process. A useful outcome will
be a prediction of the most appropriate solver or combination of solvers to choose
for a given verification problem. Such a model will show the correspondence of
input to result in a way that would be useful to verification system and SMT tool
developers as well as end users.

Ruth Hoffman (University of Glasgow)
Autonomous Agent Behaviour Modelled In PRISM
With the rising popularity of autonomous systems and their increased deploy-
ment within the public domain, ensuring the safety of these systems is crucial.
Although testing is a necessary part in the process of deploying such systems,
simulation and formal verification are key tools, especially at the early stages of
design. Simulation allows us to view the continuous dynamics and monitor the
behaviour of a system. On the other hand, formal verification of autonomous sys-
tems allows for a cheap, fast, and extensive way to check for safety and correct
functionality of autonomous systems that is not possible using simulations alone.
In this talk I demonstrate a simulation and the corresponding probabilistic model
of an unmanned aerial vehicle (UAV) in an exemplary autonomous scenario and
present results of both models. Further, I propose a definition of autonomy which
can be used to model autonomous systems, followed by a discussion on how sim-
ulations inform probabilistic models.

Alison Jones (Swansea University)
Extracting Monadic Parsers from Proofs
My talk outlines a proof-theoretic approach to developing correct and terminating
monadic parsers. Using modified realizability, we extract formally verified and
terminating programs from formal proofs. By extracting both primitive parsers
and parser combinators, it is ensured that all complex parsers built from these are
also correct, complete and terminating for any input. We demonstrate the viability
of our approach by means of two case studies: we extract (1) a small arithmetic
calculator and (2) a non-deterministic natural language parser. The work is being
carried out in the interactive proof system Minlog. (Joint work with Ulrich Berger
and Monika Seisenberger)

Josh Lockhart (University College London)
An entanglement detection problem in a faulty quantum computer.
Quantum computers and algorithms promise to be a very disruptive technology.
A key ingredient in algorithms that run on a quantum device is the ability for the

BEATCS no 119

106

hardware components to be entangled with one another. If two quantum objects
become entangled, then the simple act of checking the state of one object can in-
stantaneously affect the state of the other. A great deal of effort has been expended
studying the questions of what quantum entanglement really is, how to create it,
and how to keep it around long enough to perform useful work. In this talk we
outline new combinatorial techniques for verifying the existence of entanglement
in a quantum computer. We show how graph theory can be used to think about a
particular model of a faulty quantum computer, in an attempt to gain complexity
theoretic insight into the problem of checking for the existence of entanglement.
Specifically, we consider a restricted class of quantum states that can be repre-
sented by the combinatorial Laplacian matrix of a graph. This object encodes the
states of a quantum computer that has suffered from a particular kind of error in
its operation: the computer promised to construct a certain state but instead it has
erroneously constructed one of a number of alternative states. We prove that our
graph representation allows for certain well known entanglement criteria to be
re-expressed in terms of the structure of the graph corresponding to the quantum
state. Hence, the entanglement, or lack theoreof, in the quantum computer after
the fault can be tested via this purely combinatorial method.

David Kohan Marzagao (King’s College London)
Flag Coordination Games and Random Walks
The main goal of this talk is to establish and explore a connection between flag
coordination games and random walks. A Flag Coordination Game can be seen
as graph colouring game where, in each round, each node colours itself based on
an algorithm and on the range of visibility this node has. For example, assume
you have 20 people in a circle playing a flag coordination game, each of them
holding a red flag and a blue flag. Their goal is to reach a configuration where
each of them is raising a different flag from both neighbours, i.e., to achieve a
proper colouring of the graph. Their visibility is limited in that they can only
see the flags raised by their immediate neighbours. The game starts with random
flags and players follow an algorithm to decide which flag to raise at each new
round. More precisely, if their neigbours are raising the same colour, chose the
other colour, else, randomize between red and blue. What is the probability that
they eventually reach their goal? What is the expected number of rounds for the
game to finish? By proving an equivalence between such a game and a game
of annihilating random walking particles, we can prove a theorem regarding the
probabilities involved in the game, as well as an upper bound for the expected
time it takes for the game to end. We can, then, generalize some of the results for
graphs such that every vertex has degree 2.

Brett McLean (University College London)

The Bulletin of the EATCS

107

The Finite Representation Property for Composition, Intersection, Domain and
Range.
Motivated by modelling collections of deterministic programs, one might be in-
terested in algebras isomorphic to a set of partial functions equipped with some
set-theoretically-defined operations. We call such algebras representable and call
the isomorphisms representations. The finite representation property holds for a
signature of operations if any finite representable algebra can be represented us-
ing only a finite set as a base for the partial functions. I will describe a proof
that the finite representation property holds for some of the most expressive sig-
natures considered, containing the composition, intersection, domain and range
operations. (Joint work with Szabolcs Mikulás.)

Reino Niskanen (University of Liverpool)
Undecidability of 2-dimensional Robot Games and Other Attacker-Defender
Games
In this talk we consider simple two-player vector additional games, called robot
games. In robot games, two players, Adam and Eve, are given sets of moves which
they use to push a token on the integer lattice Zn starting from some initial point;
Eve tries to push the token to the origin, whilst Adam tries to prevent this. The
decision problem of the game is to determine which of the players has a strategy
that guarantees victory. By constructing a game that simulates a 2-counter Min-
sky machine, we show that it is undecidable whether Eve has a winning strategy
already when the game is played on a plane Z2.

We also consider other two-player games, called Attacker-Defender games,
that generalize robot games by having more complex state spaces and sets of
moves, allowing or disallowing certain moves depending on the internal states
of players. We consider games played on topological braids where Eve tries to
unbraid a braid, or on vectors, where the moves are linear transformations rather
than addition of vectors in robot games. We show that it is also undecidable
whether Eve has a winning strategy in these games by constructing games that
simulate one-counter automata on infinite words. (Joint work with Vesa Halava,
Tero Harju, Igor Potapov and Julien Reichert).

Daniel Playfair (Queen’s University Belfast)
Selection of optimal checkpoints from query plan graphs
Database fault tolerance is important for supporting critical business operations.
The existing approach is to provide replicated fault tolerant data stores. Such so-
lutions protect data and can offer availability. However, in the event of failures,
work being performed at the time of execution is lost. Existing research into solv-
ing this problem and providing intra-query fault tolerance focuses on distributed or

BEATCS no 119

108

row-oriented databases. Such solutions are not suitable for use with the column-
oriented in-memory databases increasingly used for high-performance workloads.

A key requirement to providing intra-query fault tolerance is the ability to
devise an efficient checkpoint plan for a given query plan. We introduce and
discuss a general model for reasoning about query plans. We make observations
about the location of worst case queries in such plans, and introduce algorithms
for calculating the worst case execution time of checkpointed queries. We also
discuss aspects of algorithms for producing checkpoint plans within such a model.

Craig Reilly (University of Glasgow)
Enumeration of knots using constraint programming
This presentation details a novel approach, using constraint programming, to the
problem of enumerating knot diagrams. Our enumeration makes use of Gauss
code representations of knot diagrams, which leads to an obvious modelling as a
constraint satisfaction problem. However, a Gauss code may not always represent
a knot diagram (they might represent a virtual knot) and we show that we can add
constraints to our model to disallow virtual knots. Further, each knot diagram can
be represented by many Gauss codes, and we explain new ways of modelling the
enumeration with a view towards symmetry breaking.

Latif Salum (Dokuz Eylul University, Turkey)
The Tractability of Un/Satisfiability
A safe acyclic Petri net (PN) is associated with some Exactly-1 3SAT formula
φ = c1∧ c2∧ · · ·∧ cm, in which a clause ck = (zi∨̇z j∨̇zu) is an exactly-1 disjunction
∨̇, rather than disjunction ∨, of three literals: ck is true exactly when only one of
zi or z j or zu is true. Some 2SAT/XOR-SAT formula arising in the inversed PN
checks if the truth assignment of a literal (a transition firing) zv is “incompatible”
for the satisfiability of the 3SAT formula (the reachability of the target state in
the inversed PN). If zv is incompatible, then zv is discarded and z̄v becomes true.
Therefore, a clause (z̄v∨̇zi∨̇z j) reduces to the conjunction (z̄v ∧ z̄i ∧ z̄ j), and a 3-
literal clause (zv∨̇zu∨̇zx) reduces to the 2-literal clause (zu ⊕ zx). This reduction
facilitates checking (un)satisfiability; the 3SAT formula is (un)satisfiable iff the
target state of the inversed PN is (un)reachable. The solution complexity is O(n5).
Therefore, it is the case that P = NP = co-NP.

Chhaya Trehan (Queen’s University Belfast)
Energy consumption of parallel workloads: convexity, parallelism and memory
intensity
Performance and energy consumption are important and contradicting design cri-
teria for modern multicore processors. Optimizing one whilst imposing a thresh-
old on the other leads to two flavors of optimization: in the laptop problem, the

The Bulletin of the EATCS

109

goal is to maximize performance given a fixed energy budget; in the server prob-
lem, the goal is to minimize energy consumption given a fixed performance bud-
get. We deal with the server problem in this talk. Energy and performance of a
parallel application running on a multicore chip are convex functions of its vary-
ing operating frequency. Analytical frameworks have been built that exploit this
in order to tune the operating frequency of the processor. However, existing theo-
retical work on energy minimization using frequency tuning ignores the time and
energy consumed by the processor whilst it waits to access the data it requires
from the main memory. We present a new energy-performance model which ac-
counts for the time and energy consumed by a processor on memory accesses in
addition to the time and energy consumed on actual CPU instructions. We show
that the problem of energy minimization under a performance budget remains a
convex optimization problem in the new model. We also investigate how the opti-
mal operating points (frequencies) in our model differ from the operating points in
the model that does not account for the energy performance overhead of memory
accesses. Finally, we show the relationship between the optimal frequencies and
energy-aware scheduling of an application.

BEATCS no 119

110

111

Report from the Japanese Chapter
Ryuhei Uehara (JAIST)

EATCS-JP/LA Workshop on TCS and Presentation Awards
The 13th EATCS/LA Workshop on Theoretical Computer Science was held at Re-
search Institute of Mathematical Sciences, Kyoto University, January 26 to Jan-
uary 28, 2015. (The program also can be found at
http://www.is.titech.ac.jp/~mori/LA2015/LA2015winter_program.pdf,
but it is written in Japanese...)

By attendees’ voting, the following talk by Prof. Yukiko Yamauchi (Kyushu
University) was selected as the 13th EATCS/LA Presentation Award:

Pattern Formation by Oblivious Synchronous Mobile Robots in the
Three Dimensional Space by Yukiko Yamauchi (Kyushu University),
Taichi Uehara (Kyushu University), and Masafumi Yamashita (Kyushu
University)

The award will be given to her at the Summer LA Symposium held in July 2016.
We also established another presentation award, named “EATCS/LA Student

Presentation Award” to encourage students. Mr. Shuichi Hirahara (The Uni-
versity of Tokyo) who presented the following paper, was selected as the fifth
EATCS/LA Student Presentation Award:

Limits of Minimum Circuit Size Problem as Oracle by Shuichi Hira-
hara (The University of Tokyo) and Osamu Watanabe (Tokyo Institute
of Technology)

The award (with some gift for playing in his laboratory) has been already recog-
nized publicly at the last day, January 28, 2015.

Congratulations!

This workshop is jointly organized with LA symposium, Japanese association
of theoretical computer scientists. Its purpose is to give a place for discussing
topics on all aspects of theoretical computer science. (In fact, I’ve heard some dif-
ferent opinions that “L” stands for Logic and/or Language, and “A” stands for Al-
gorithm and/or Automaton.) That is, this workshop is an unrefereed familiar meet-
ing. All submissions are accepted for the presentation. There should be no prob-
lem of presenting these papers in refereed conferences and/or journals. We hold it

BEATCS no 119

112

twice a year (January/February, and July/August). If you have a chance, I recom-
mend you to attend it. Check http://www.ecei.tohoku.ac.jp/alg/EATCS-J/
for further details. You can find the program of the last workshop below.

Program of EATCS-JP/LA workshop on TCS (January 26th to 28th, 2016)

In the following program, “*” indicates ordinary speakers, while “**” indi-
cates student speakers. The number [Sxx] means student session, which consists
of shorter talks than the ordinary talks.

[S1] SUS queries on run-length-encoded string
**Takuya Mieno, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu
University)

[S2] Data structure and algorithm for longest common extension queries
**Yuka Tanimura (Kyushu University), Tomohiro I (Kyushu Institute of Technol-
ogy), Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu University)

[S3] Approximate tree distance for a large number of data
**Takumi Yone, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Kyushu
University)

[S4] Regret Analysis for Online Binary Search Tree Problems with Switching Costs
**Tadahiro Matsukawa, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita
(Kyushu University)

[1] Pattern Formation by Oblivious Synchronous Mobile Robots in the Three Dimen-
sional Space

*Yukiko Yamauchi (Kyushu University), Taichi Uehara, Masafumi Yamashita
(Kyushu University)

[2] An efficient data structure for alignments of substrings
*Yoshifumi Sakai (Graduate School of Agricultural Science, Tohoku University)

[3] Folding Orthogonal Polygons to Orthogonal Boxes
Takashi Horiyama, **Koichi Mizunashi (Saitama University)

[S5] Online prediction for non-cumulative loss functions
**Wakana Mori, Kohei Hatano, Eiji Takimoto (Kyushu University)

[S6] Theory and Practice of Dynamic Graph Algorithms
**Mikiya Imura (Tokyo Institute of Technology)

[S7] On repetition factorization of strings.
**Hiroe Inoue, Shyunsuke Inenaga , Hideo Bannai (Kyushu University),
Masayuki Takeda (kyushu University)

[S8] Inferring Strings from Lyndon Tree
**Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu
University)

[4] Lower bounds of circuit-size loss for direct-product lemmas
*Akinori Kawachi (Tokushima University)

[5] On the Computational Complexity of Counting Gaps in Numerical Semigroups
*Shunichi Matsubara (Aoyama Gakuin University)

[6] Limits of Minimum Circuit Size Problem as Oracle
**Shuichi Hirahara (The University of Tokyo), Osamu Watanabe (Tokyo Institute
of Technology)

[7] Key Dependent Message Security in the Random Oracle Model

The Bulletin of the EATCS

113

**Fuyuki Kitagawa (Tokyo Institute of Technology, AIST), Takahiro Matsuda,
Goichiro Hanaoka (AIST), Keisuke Tanaka (Tokyo Institute of Technology, JST
CREST)

[8] Selfless Anonymity on Group Signature
**Ai Ishida (Tokyo Institute of Technology / AIST), Keita Emura (NICT), Goichiro
Hanaoka, Yusuke Sakai (AIST), Keisuke Tanaka (Tokyo Institute of Technology /
JST CREST), Shota Yamada (AIST)

[9] On Efficient Correctability of Samplable Errors
*Kenji Yasunaga (Kanazawa University)

[S9] Analysis of Black Box Reduction for Circuits
**Ryo Ashida (Tokyo Institute of Technology)

[S10] Attribute-Based Encryption from Lattices with Revocation
**Yuuki Sawai, Yuyu Wang (Tokyo Institute of Technology), Keisuke Tanaka
(Tokyo Institute of Technology/CREST)

[S11] A secure two-party protocol using indistinguishability obfuscators
**Kanako Baba (Tokushima University), Akinori Kawachi

[S12] Sliding tokens on unicyclic graphs
**Duc Anh Hoang (JAIST), Ryuhei Uehara (JAIST))

[S13] On Left-Right Maximal Generic Words
**Yuta Fujishige, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki
Takeda (Kyushu University)

[S14] On abelian square-free strings
**Takafumi Inoue, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu
University)

[10] A revisit of tangles from perspectives of ideals and filters
*Koichi Yamazaki (Gunma University)

[11] Approximation of ASPL on graph of diameter 3
**Nobutaka Shimizu, Ryuhei Mori (Tokyo Institute of Technology)

[12] What Is a Network Community? A Novel Quality Function and Detection Al-
gorithms

**Atsushi Miyauchi, Yasushi Kawase (Tokyo Institute of Technology)
[13] Efficiency of Garbled Circuits for Symmetric Functions

**Hiroyuki Tohyama, Zen Inomata (Tokyo Institute of Technology), Keisuke
Tanaka (Tokyo Institute of Technology, JST CREST)

[14] A Polynomial-time Algorithm for Checking the Inclusion of Deterministic Re-
stricted One-Counter Transducers Which Accept by Final State

*Mitsuo Wakatsuki, Etsuji Tomita, Tetsuro Nishino (The University of Electro-
Communications)

[15] A column generation approach for the bus crew scheduling problem
**Yuki Sawai, Yannan Hu, Wei Wu (Nagoya University), Hideki Hashimoto
(Tokyo University of Marine Science and Technology), Masaki Kato, Tsutomu
Saito (Kozo Keikaku Engineering Inc.), Mutsunori Yagiura (Nagoya University)

[S15] Randomized Approximate Counting of the Number of Paths in a Grid Graph
**Yuki Shibata, Yukiko Yamauchi, Shuji Kijima, Masafumi Yamashita (Kyushu
University)

[S16] Efficient Enumeration of Series-Parallel Graphs
**Atsushi Fujii (JAIST), Ryuhei Uehara (JAIST)

[S16] An algorithm for computing minimal absent words

BEATCS no 119

114

**Yuki Tsujimaru, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda (Kyushu
University)

The Japanese Chapter

Chair: Osamu Watanabe

Vice Chair: Ryuhei Uehara

Secretary: Takehiro Ito

email: eatcs-jp@is.titech.ac.jp

URL: http://www.ecei.tohoku.ac.jp/alg/EATCS-J/index.html

Miscellaneous

The Bulletin of the EATCS

117

EATCS Fellows’ Advice to the Young
Theoretical Computer Scientist

Luca Aceto (Reykjavik University)
with contributions by Mariangiola Dezani-Ciancaglini,

Yuri Gurevich, David Harel, Monika Henzinger,
Giuseppe F. Italiano, Scott Smolka,

Paul G. Spirakis and Wolfgang Thomas

I have always enjoyed reading articles, interviews, blog posts and books in
which top-class scientists share their experience with, and provide advice to,
young researchers. In fact, despite not being young any more, alas, I feel that
I invariably learn something new by reading those pieces, which, at the very least,
remind me of the things that I should be doing, and that perhaps I am not doing,
to uphold high standards in my job.

Based on my partiality for scientific advice and stories, it is not overly surpris-
ing that I was struck by the thought that it would be interesting to ask the EATCS
Fellows for

• the advice they would give to a student interested in theoretical computer
science (TCS),

• the advice they would give to a young researcher in TCS and

• a short description of a research topic that excites them at this moment in
time (and possibly why).

In this article, whose title is inspired by the classic book Advice To A Young Scien-
tist authored by the Nobel Prize winner Sir Peter Brian Medawar, I collect the an-
swers to the above-listed questions I have received from some of the EATCS Fel-
lows. The real authors of this piece are Mariangiola Dezani-Ciancaglini (Univer-
sity of Turin), Yuri Gurevich (Microsoft Research), David Harel (Weizmann Insti-
tute of Science), Monika Henzinger (University of Vienna), Giuseppe F. Italiano
(University of Rome Tor Vergata), Scott Smolka (Stony Brook University), Paul
G. Spirakis (University of Liverpool, University of Patras and Computer Tech-
nology Institute & Press “Diophantus”, Patras) and Wolfgang Thomas (RWTH
Aachen University), whom I thank for their willingness to share their experience

BEATCS no 119

118

and wisdom with all the members of the TCS community. In an accompanying
essay, which follows this one in this issue of the Bulletin, you will find the piece
I received from Michael Fellows (University of Bergen).

The EATCS Fellows are model citizens of the TCS community, have varied
work experiences and backgrounds, and span a wide spectrum of research areas.
One can learn much about our field of science and about academic life in general
by reading their thoughts. In order to preserve the spontaneity of their contribu-
tions, I have chosen to present them in an essentially unedited form. I hope that
the readers of this article will enjoy them as much as I have done.

Mariangiola Dezani-Ciancaglini

The advice I would give to a student interested in TCS is: Your studies will be
satisfactory only if understanding for you is fun, not a duty.

To a young researcher in TCS I would say, “Do not be afraid if you do not see
applications of the theory you are investigating: the history of computer science
shows that elegant theories developed with passion will have eventually long-
lasting success.”

A research topic that currently excites me is the study of behavioural types.
These types allow for fine-grained analysis of communication-centred computa-
tions. The new generation of behavioural types should allow programmers to
write the certified, self-adapting and autonomic code that the market is requiring.

Yuri Gurevich

Advice I would give to a student interested in TCS Attending math seminars
(mostly in my past), I noticed a discord. Experts in areas like complex analysis
or PDEs (partial differential equations) typically presume that everybody knows
Fourier transforms, differential forms, etc., while logicians tend to remind the au-
dience of basic definitions (like what’s first-order logic) and theorems (e.g. the
compactness theorem). Many talented mathematicians didn’t take logic in their
college years, and they need those reminders. How come? Why don’t they ef-
fortlessly internalize those definitions and theorems once and for all? This is not
because those definitions and theorems are particularly hard (they are not) but
because they are radically different from what they know. It is easier to learn radi-
cally different things — whether it is logic or PDEs or AI — in your student years.
Open your mind and use this opportunity!

The Bulletin of the EATCS

119

Advice I would give a young researcher in TCS As the development of
physics caused a parallel development of physics-applied mathematics, so the de-
velopment of computer science and engineering causes a parallel development of
theoretical computer science. TCS is an applied science. Applications justify it
and give it value. I would counsel to take applications seriously and honestly.
Not only immediate applications, but also applications down the line. Of course,
like in mathematics, there are TCS issues of intrinsic value. And there were cases
when the purest mathematics eventually was proven valuable and applied. But in
most cases, potential applications not only justify research but also provide guid-
ance of sorts. Almost any subject can be developed in innumerable ways. But
which of those ways are valuable? The application guidance is indispensable.

I mentioned computer engineering above for a reason. Computer science is
different from natural science like physics, chemistry, biology. Computers are
artifacts, not “naturefacts.” Hence the importance of computer science and engi-
neering as a natural area whose integral part is computer science.

A short description of a research topic that excites me at this moment in
time (and possibly why) Right now, the topics that excite me most are quantum
mechanics and quantum computing. I wish I could say that this is the result of a
natural development of my research. But this isn’t so. During my long career, I
moved several times from one area to another. Typically it was natural; e.g. the
theory of abstract state machines developed in academia brought me to industry.
But the move to quanta was spontaneous. There was an opportunity (they started a
new quantum group at the Microsoft Redmond campus a couple of years ago), and
I jumped upon it. I always wanted to understand quantum theory but occasional
reading would not help as my physics had been poor to none and I haven’t been
exposed much to the mathematics of quantum theory. In a sense I am back to
being a student and discovering a new world of immense beauty and mystery,
except that I do not have the luxury of having time to study things systematically.
But that is fine. Life is full of challenges. That makes it interesting.

David Harel
Advice I would give to a student interested in TCS If you are already enrolled
in a computer science program, then unless you feel you are of absolutely stellar
theoretical quality and the real world and its problems do not attract you at all,
I’d recommend that you spend at least 2/3 of your course efforts on a variety of
topics related to TCS but not “theory for the sake of theory”. Take lots of courses
on languages, verification AI, databases, systems, hardware, etc. But clearly don’t
shy away from pure mathematics. Being well-versed in a variety of topics in

BEATCS no 119

120

mathematics can only do you good in the future. If you are still able to choose a
study program, go for a combination: TCS combined with software and systems
engineering, for example, or bioinformatics/systems biology. I feel that computer
science (not just programming, but the deep underlying ideas of CS and systems)
will play a role in the science of the 21st century (which will be the century of
the life sciences) similar to that played by mathematics in the science of the 20th
century (which was the century of the physical sciences).

Advice I would give a young researcher in TCS Much of the above is relevant
to young researchers too. Here I would add the following two things. First, if you
are doing pure theory, then spend at least 1/3 of your time on problems that are
simpler than the real hard one you are trying to solve. You might indeed succeed in
settling the P=NP? problem, or the question of whether PTIME on general finite
structures is r.e., but you might not. Nevertheless, in the latter case you’ll at least
have all kinds of excellent, if less spectacular, results under your belt. Second,
if you are doing research that is expected to be of some practical value, go talk
to the actual people “out there”: engineers, programmers, system designers, etc.
Consult for them, or just sit with them and see their problems first-hand. There is
nothing better for good theoretical or conceptual research that may have practical
value than dirtying your hands in the trenches.

A short description of a research topic that excites me at this moment in
time (and possibly why) I haven’t done any pure TCS for 25 years, although
in work my group and I do on languages and software engineering there is quite
a bit of theory too, as is the case in our work on biological modeling. However,
for many years, I’ve had a small but nagging itch for trying to make progress on
the problem of artificial olfaction — the ability to record and remotely produce
faithful renditions of arbitrary odors. This is still a far-from-solved issue, and is
the holy grail of the world of olfaction. Addressing it involves chemistry, biology,
psychophysics, engineering, mathematics and algorithmics (and is a great topic
for young TCS researchers!). More recently, I’ve been thinking about the question
of how to test the validity of a candidate olfactory reproduction system, so that we
have an agreed-upon criterion of success for when such systems are developed. It
is a kind of common-sense question, but one that appears to be very interesting,
and not unlike Turing’s 1950 quest for testing AI, even though such systems were
nowhere in sight at the time. In the present case, trying to compare testing artificial
olfaction to testing the viability of sight and sound reproduction will not work, for
many reasons. After struggling with this for quite a while, I now have a proposal
for such a test, which is under review.

The Bulletin of the EATCS

121

Monika Henzinger

• Students interested in TCS should really like their classes in TCS and be
good at mathematics.

• I advice young researchers in TCS to try to work on important problems
that have a relationship to real life.

• Currently I am interested in understanding the exact complexity of different
combinatorial problems in P (upper and lower bounds).

Giuseppe F. Italiano

The advice I would give to a student interested in TCS There’s a great quote
by Thomas Huxley: “Try to learn something about everything and everything
about something.” When working through your PhD, you might end up focusing
on a narrow topic so that you will fully understand it. That’s really great! But one
of the wonderful things about Theoretical Computer Science is that you will still
have the opportunity to learn the big picture!

The advice I would give a young researcher in TCS Keep working on the
problems you love, but don’t be afraid to learn things outside of your own area.
One good way to learn things outside your area is to attend talks (and even con-
ferences) outside your research interests. You should always do that!

A short description of a research topic that excites me at this moment in
time (and possibly why) I am really excited by recent results on conditional
lower bounds, sparkled by the work of Virginia Vassilevska Williams et al. It
is fascinating to see how a computational complexity conjecture such as SETH
(Strong Exponential Time Hypothesis) had such an impact on the hardness results
for many well-known basic problems.

Scott Smolka

Advice I would give to a student interested in TCS Not surprising, it all starts
with the basics: automata theory, formal languages, algorithms, complexity the-
ory, programming languages and semantics.

BEATCS no 119

122

Advice I would give a young researcher in TCS Go to conferences and estab-
lish connections with more established TCS researchers. Seek to work with them
and see if you can arrange visits at their home institutions for a few months.

A short description of a research topic that excites me at this moment in time
(and possibly why) Bird flocking and V-formation are topics I find very excit-
ing. Previous approaches to this problem focused on models of dynamic behavior
based on simple rules such as: Separation (avoid crowding neighbors), Alignment
(steer towards average heading of neighbors), and Cohesion (steer towards aver-
age position of neighbors). My collaborators and I are instead treating this as a
problem of Optimal Control, where the fitness function takes into account Velocity
Matching (alignment), Upwash Benefit (birds in a flock moving into the upwash
region of the bird(s) in front of them), and Clear View (birds in the flock having
unobstructed views). What’s interesting about this problem is that it is inherently
distributed in nature (a bird can only communicate with its nearest neighbors),
and one can argue that our approach more closely mimics the neurological pro-
cess birds use to achieve these formations.

Paul G Spirakis
My advice to a student interested in TCS Please be sure that you really like
Theory! The competition is high, you must love mathematics, and the money
prospects are usually not great. The best years of life are the student years. Theory
requires dedication. Are you ready for this?

Given the above, try to select a good advisor (with whom you can interact well
and frequently). The problem you choose to work on should psyche you and your
advisor!

It is good to obtain a spherical and broad knowledge of the various Theory
subdomains. Surprisingly, one subfield affects another in unexpected ways.

Finally, study and work hard and be up to date with respect to results and
techniques!

My advice to a young researcher interested in TCS Almost all research prob-
lems have some difficulty. But not all of them are equally important! So, please
select your problems to solve carefully! Ask yourself and others: why is this a
nice problem? Why is it interesting and to which community? Be strategic!

Also, a problem is good if it is manageable in a finite period of time. This
means that if you try to solve something open for many years, be sure that you
will need great ideas, and maybe lots of time! However, be ambitious! Maybe

The Bulletin of the EATCS

123

you will get the big solution! The issue of ambition versus reasonable progress is
something that you must discuss with yourself!

It is always advisable to have at least two problems to work on, at any time.
When you get tired from the main front, you turn on your attention to the other
problem.

Try to interact and to announce results frequently, if possible in the best fo-
rums. Be visible! It is important that other good people know about you. “Speak
out to survive!”

Study hard and read the relevant literature in depth. Try to deeply understand
techniques and solution concepts and methods. Every paper you read may lead
to a result of yours if you study it deeply and question every line carefully! Find
quiet times to study hard. Control your time!

A field that excites me: the discrete dynamics of probabilistic (finite) popu-
lation protocols Population Protocols are a recent model of computation that
captures the way in which complex behavior of systems can emerge from the un-
derlying local interactions of agents. Agents are usually anonymous and the local
interaction rules are scalable (independent of the size, n, of the population). Such
protocols can model the antagonism between members of several “species” and
relate to evolutionary games.

In the recent past I was involved in joint research studying the discrete dynam-
ics of cases of such protocols for finite populations. Such dynamics are, usually,
probabilistic in nature, either due to the protocol itself or due to the stochastic na-
ture of scheduling local interactions. Examples are (a) the generalized Moran pro-
cess (where the protocol is evolutionary because a fitness parameter is crucially
involved) (b) the Discrete Lotka-Volterra Population Protocols (and associated
Cyclic Games) and (c) the Majority protocols for random interactions.

Such protocols are usually discrete time transient Markov Chains. However
the detailed states description of such chains is exponential in size and the state
equations do not facilitate a rigorous approach. Instead, ideas related to filtering,
stochastic domination and Potentials (leading to Martingales) may help in under-
standing the dynamics of the protocols.

Some such dynamics can describe strategic situations (games): Examples in-
clude Best-Response Dynamics, Peer-to-Peer Market dynamics, fictitious play
etc.

Such dynamics need rigorous approaches and new concepts and techniques.
The ‘traditional’ approach with differential equations (found in e.g. evolutionary
game theory books) is not enough to explain what happens when such dynamics
take place (for example) in finite graphs with the players in the nodes and with
interactions among neighbours. Some main questions are: How fast do such dy-

BEATCS no 119

124

namics converge? What is a ‘most probable’ eventual state of the protocols (and
the computation of the probability of such states). In case of game dynamics, what
is the kind of ‘equilibria’ to which they converge? Can we design ‘good’ discrete
dynamics (that converge fast and go to desirable stable states ?). What is the
complexity of predicting most probable or eventual behaviour in such dynamics?

Several aspects of such discrete dynamics are wide open and it seems that the
algorithmic thought can contribute to the understanding of this emerging subfield
of science.

Wolfgang Thomas, “Views on work in TCS”
As one of the EATCS fellows I have been asked to contribute some personal words
of advice for younger people and on my research interests. Well, I try my best.

Regarding advice to a student and young researcher interested in TCS, I start
with two short sentences:

• Read the great masters (even when their h-index is low).

• Don’t try to write ten times as many papers as a great master did.

And then I add some words on what influenced me when I started research — you
may judge whether my own experiences that go back to “historical” times would
still help you.

By the way, advice from historical times, where blackboards and no projectors
were used, posed in an entertaining but clearly wise way, is Gian-Carlo Rota’s pa-
per “Ten Lessons I Wish I Had Been Taught” (http://www.ams.org/notices/
199701/comm-rota.pdf). This is a view of a mathematician but still worth read-
ing and delightful for EATCS members. People like me (68 years old) are also
addressed — in the last lesson “Be Prepared for Old Age”. . .

Back in the 1970’s when I started I wanted to do something relevant. For
me this meant that there should be some deeper problems involved, and that the
subject of study is of long-term interest. I was attracted by the works of Büchi and
Rabin just because of this: That was demanding, and it treated structures that will
be important also in hundred years: the natural numbers with successor, and the
tree of all words (over some alphabet) with successor functions that represent the
attachment of letters.

The next point is a variation of this. It is a motto I learnt from Büchi, and it
is a warning not to join too small communities where the members just cite each
other. In 1977, when he had seen my dissertation work, Büchi encouraged me to
continue but also said: Beware of becoming member of an MAS, and he explained
that this means “mutual admiration society”. I think that his advice was good.

The Bulletin of the EATCS

125

I am also asked to say something about principles for the postdoctoral phase.
It takes determination and devotion to enter it. I can say just two things, from my
own experience as a young person and from later times. First, as it happens with
many postdocs, in my case it was unclear up to the very last moment whether I
would get a permanent position. In the end I was lucky. But it was a strain. I al-
ready prepared for a gymnasium teacher’s career. And when on a scientific party
I spoke to Saharon Shelah (one of the giants of model theory) about my worries,
he said “well, there is competition”. How true. So here I just say: Don’t give
away your hopes — and good luck. The other point is an observation from my
time as a faculty member, and it means that good luck may be actively supported.
When a position is open the people in the respective department do not just want
a brilliant researcher and teacher but also a colleague. So it is an important ad-
vantage when one can prove that one has more than just one field where one can
actively participate, that one can enter new topics (which anyway is necessary in
a job which lasts for decades), and that one can cooperate (beyond an MAS). So
for the postdoc phase this means to look for a balance between work on your own
and work together with others, and if possible in different teams of cooperation.

Finally, a comment on a research topic that excites me at this moment. I find it
interesting to extend more chapters of finite automata theory to the infinite. This
has been done intensively in two ways already — we know automata with infinite
“state space” (e.g., pushdown automata where “states” are combined from control
states and stack contents), and we know automata over infinite words (infinite
sequences of symbols from a finite alphabet). Presently I am interested in words
(or trees or other objects) where the alphabet is infinite, for example where a letter
is a natural number, and in general where the alphabet is given by an infinite
model-theoretic structure. Infinite words over the alphabet N are well known in
mathematics since hundred years (they are called points of the Baire space there).
In computer science, one is interested in algorithmic results which have not been
the focus in classical set theory and mathematics, so much is to be done here.

127

Are you interested in
theoretical computer science? (How not???)

I have some advice for you

Michael Fellows
Department of Informatics, University of Bergen

michael.fellows@uib.no

Long ago, in the time of MEGA-Math (sponsored by the Los Alamos Na-
tional Laboratories) Nancy Casey and I were doing some of those activities that
are now better known as Computer Science Unplugged! activities (both easily
googled) that are designed to present mathematical ideas that are foundational
to computer science in concrete ways accessible to school-age children. We were
visiting the first-grade classroom of legendary teacher Prudy Heimsch in Moscow,
Idaho. Wondering how these concrete activities basically about theoretical com-
puter science fit with her classroom objectives, we asked her, “Do you have any
particular objectives in mind for your six-year-olds?”

Prudy answered without hesitation, Yes I do! I have three goals for them:
I want them to learn to communicate.
I want them to learn to think about their own thinking.
I want them to be able to formulate a project of their own devising, and carry

it through to completion.
These core objectives will serve until graduate school and beyond! This being

the case, here is my advice for students.
The call for these contributions of advice from the EATCS Fellows, asks for

the discussion to be organized as advice for four different levels of education:
School level: meaning primarily High School, University level, PhD students,
Young researchers beyond the PhD. But what about the kids? The burning heart
of curiousity is 6-7-8-9-10 year-olds! Attend to the fire.

Primary School. We were in love with Einstein when we were ten years
old. We wanted to be theoretical physicists when we grow up. There was no
chance for Relativity to be in the school curriculum. But there was a chance, in
those olden days, to get a bit of what they used to call “enrichment”. Someone
would come to the school and tell us exciting stuff that was not in any lesson plan.

If you are a little kid, with any inkling of what theoretical computer science is

BEATCS no 119

128

about, or you just want to know, my advice to you is to demand enrichment to
theoretical computer science, so that you can be exposed to exciting contemporary
science, heart of modern civilization.

That’s the advice if you are in the lower grades: demand some exposure
to theoretical computer science. If your parents work in IT: demand that they
visit your classroom, or that they arrange for one of their friends to come to your
classroom.

Take charge of educating yourself. There is plenty of stuff on Computer Sci-
ence Unplugged! at http://csunplugged.org/.

Much of my advice for High School and beyond is aimed at you as well.
Explore questions. Fill notebooks with drawings, ideas, speculations, guesses,
investigations. Look for the big picture, and then try to see details and how details
fit together to make the big picture.

High School. Explosion of interests and engagements! Bring it on! Later
you may appreciate all the ironies involved. Cultivate a passionate interest in
literature. You cannot be a great scientist without it–to a first approximation.
There is some weird correlation between physical and intellectual courage. Go
surfing! Who is to advise people at this flowering age beyond th emselves? OK,
pick an intellectually ambitious book about TCS, stick it in your backpack and
GO. Mine was Goldblatt’s book on Topoi, to the High Sierras of California. Just
go, go, go! Develop mentors! Famous scientists (and younger ones) are easier to
approach than you might imagine — just email, or write a letter on paper. There
are tons of open problems — just join in. Do not waste too much time with
computers. If you are interested in theoretical computer science, you are going to
need a lot of mathematics, the ultimate magical mind game, with power over most
everything going on, except for love.

University Student. There is almost no chance for a serious research
career in theoretical computer science without solid foundations in Mathematics.

Learn math! If you are a college student, a double major in both Mathemat-
ics and Computer Science is a good option. If you must choose, choose Math.
Mathematics is somehow ever-metacognitive, across all fields.

Join in! If you are an undergraduate student studying Mathematics with an
interest in Computer Science, then you should join both the American Mathemat-
ical Society and the Association for Computing Machinery. I did that when I went
to college after the Vietnam War, and although I didn’t have much money at the
time, it was the best investment I ever made. Publications will arrive to your mail-
box describing exciting contemporary developments in these fields. Read about
them, even if at the beginning, you don’t really understand much of what is going
on. Fields Medal winner Michael Freedman, who was a mentor to me, once told
me about how he got into Mathematics as an undergraduate by browsing research
journals and becoming obsessed with trying to figure out what they were on about.

The Bulletin of the EATCS

129

Do that!
Educate yourself! Do not expect the university or the high school or the

elementary school to educate you. At best, realistically, they won’t get too much
in your way. The school curriculum is inherently way too slow to keep up. You
must depend on forming and making support groups of friends, finding mentors
(easier than you might think), and taking things into your own hands.

Do research! It is never too early to take up a research project appropriate
to your level. Mentors will happily help you. Exploring questions that nobody
knows the answer to is really fun. Maybe surfing a really big wave is competitive
in the short term, but doing science is fun and gratifying. If you manage to publish
research as a high school student, which is a perfectly reasonable objective, this
will open doors when you apply to the universities. If you manage to publish
research as a university student, this will open doors when you apply to graduate
school. Working on a real project is the best way to learn.

PhD Student in Computer Science. During a wonderful visit with
the research group of Prof. Jianxin Wang at Central South University, Changsha,
China, a student engaged me over dinner asking for advice and this is the result of
our conversation. There are two different advices. One is for science and one for
career. Often, they overlap.

SCIENCE
• Do not trust your advisor. Watch out for “mini–Me”. Be prepared to sniff it out
and bolt. Your interests do not align. Your advisor is (especially if young) almost
always desperately interested in advancing their own career, and you should study
the blues. There are exceptions, but they tend to be rare. Your true mission is to
pioneer new and outlandish angles, ideas and kinds of questions, and be prepared
to defend your own new directions of research.
• Put research first. Learn by doing. Try things out. Dream big.
• Work on more than one problem at a time, or in more than one research

direction. Have several functional advisors.
• Don’t be shy. Write to other scientists and to the authors of papers you have

read.
• Choose your problems. Some problems have important applications, while

others have the potential to build theory. Some people are natively problem solvers
with sharp tools and others are theory builders with a big picture view, although
probably all are a bit of both.
• Visit. This is part of, “Don’t be shy”. Visit other research teams. Learn who

else is working in your areas. Get to know the other students and leaders.
• Pick good partners. Good research partners inspire each other to keep going

past the ‘finish line’ and get the job completely done and on time.
• Make friends in other fields. Each field has its own vocabulary and solving

techniques.

BEATCS no 119

130

CAREER
There are two targets that you may be working towards: science and career.

Both are important and there is no shame in favouring one over the other at various
points in time—or in point of your interest or career (there may be ebb and flow).
• Enjoy writing for grants. It may seem strange to suggest enjoyment of

grantwriting, but it is an opportunity to hone your writing skills, explain what
you care about to people who may not be in the same area, (often they are not), to
clarify in your own mind your plans and aspirations, rethink and reconnect with
your collaborators. Once you have written a solid grant proposal, you may want to
give away the ideas to others who are seeking funding from other sources. Good
ideas deserve to be funded.
• Serve the reader. We have all encountered speakers and writers with an

agenda of making themselves look intelligent and knowledgeable by using words
and phrases that obfuscate the issues. Some writers give multiple citations to ob-
scure references. Our job is to help the reader in every way possible to understand
the sometimes arcane material we are offering.
• Story is central. Story is a bigger force than science. Everybody lives by

stories. They are a primal force. In mathematics, we add formalism. We have
equations that lead to solutions but story has its own logic. Find the story in what
you are telling and presenting. This will help the listener meet you more than
half-way.
• Generously credit everyone else’s work. Fiercely defend your own IP.
Postdoctoral Researcher and Young Professor. The advice above

for PhD students in Computer Science is appropriate for you, as well.
• When writing papers, generously credit previous and related work. Do not

make the mistake of citing only FOCS, STOC and SODA papers. Your proper
goal is to serve the reader not impress the reader.
• Now is your time to liberate your curiosity! Hedge your bets and work on

more than one project. Have several functional advisors. Communicate with and
visit other teams in other universities.
• Do stuff with young people. – Refreshes your morale (and amazes your

colleagues and is very easy to do.)
– Good for your kids.
– Good for everybody, really.
– Good for science, government and industry because the effort to clearly

communicate your ideas brings out new basic questions. – This is NOT about
university recruitment!
• Think about moving (geographically)! Don’t be overly concerned about

moving to a “small” place. When I was a young professor, I joined a small,
fairly remote university for family reasons. I was the only research professor, and
this meant that I got ALL the research budget, which was considerable since the

The Bulletin of the EATCS

131

university got almost all the state’s research budget. You may become a “big fish
in a small pond” and be able to influence important research directions in your
area.

Horizons.
The original call for these contributions of advice from the EATCS Fellows,

asked for: A short description of a currently favourite research topic.
Many parameterised problems are FPT and the toolkit for approving such re-

sults is quite varied. Yet in some sense, because a parameterised problem is FPT
if and only if there is a P-time kernelization algorithm, one can say that prov-
ing the best possible P-time kernelization bound is the canonical issue. Many
FPT kernelization results can be proved by neatly structured and algorithmically
well-behaved argumentation. This programmatic point of view is advocated in
the paper FPT is P- time Extremal Structure Theory: the Case of MAX LEAF
which gives a good example. I am interested in axiomatizing and exploring the
limits and meta-theorems about groovy FPT: kernelization results where every-
thing in sight is polynomial time or has a polynomial time interpretation. From
such well-structured results, one can canonically derive P-time approximation al-
gorithms, and canonically associated inductive gradients of interest to local search
algorithms and greedy heuristics, thus neatly connecting several different basic al-
gorihmic issues. There are also concrete examples showing that groovy FPT is a
proper subset of FPT, so that this is a really exciting and fundamental direction in
FPT research.

Contributions by
EATCS
Award Recipients

The Bulletin of the EATCS

135

Interview with
Stephen Brookes and PeterW. O’Hearn

Recipients of the 2016 Gödel Prize

Luca Aceto
ICE-TCS, School of Computer Science,

Reykjavik University
luca@ru.is

Stephen Brookes (Carnegie Mellon University, USA) and Peter W. O’Hearn
(Facebook and University College London, UK) are the recipients of the 2016
Gödel Prize for their invention of Concurrent Separation Logic, as described in
the following two papers:

• S. Brookes, A Semantics for Concurrent Separation Logic. Theoretical
Computer Science 375(1–3):227–270 (2007) and

• P. W. O’Hearn, Resources, Concurrency, and Local Reasoning. Theoretical
Computer Science 375(1–3):271–307 (2007).

Quoting from the citation for the prize:

“Concurrent Separation Logic (CSL) is a revolutionary advance over
previous proof systems for verifying properties of systems software,
which commonly involve both pointer manipulation and shared-
memory concurrency. For the last thirty years experts have regarded
pointer manipulation as an unsolved challenge for program verifica-
tion and shared-memory concurrency as an even greater challenge.
Now, thanks to CSL, both of these problems have been elegantly and
efficiently solved; and they have the same solution.”

As highlighted in the citation by the 2016 Gödel Prize committee, the impact of
CSL has been extraordinary, both from a theoretical and practical viewpoint. CSL
has led to a wealth of follow-up research over the last decade and “its simplicity
and structure also facilitates automation. As a result numerous tools and tech-
niques in the research community are based on it and it is attracting attention in
companies such as Microsoft, Facebook and Amazon.”

BEATCS no 119

136

In order to celebrate the award of the Gödel prize to this path-breaking work
and to allow the research community in theoretical computer science at large to
appreciate the origin of the ideas that led to their invention of Concurrent Sepa-
ration Logic, I interviewed Stephen Brookes (abbreviated to SB in what follows)
and Peter W. O’Hearn (referred to as PO in the text below) via email. I hope
that the readers of the Bulletin of the EATCS will enjoy reading the text of the
interview as much as I did.

1 The interview
LA: You are receiving the Gödel Prize 2016 for your invention of Concurrent Sep-
aration Logic (CSL), which, quoting from the prize citation, is “a revolutionary
advance over previous proof systems for verifying properties of systems software,
which commonly involve both pointer manipulation and shared-memory concur-
rency.” Could you briefly describe the history of the ideas that led to the invention
of CSL, what were the main inspirations and motivations for its invention and how
CSL advanced the state of the art?

PO: After John Reynolds and I and others had done the initial work on separation
logic for sequential programs it made sense to consider concurrency, just based
on the idea of using the logic to keep track of the separation of resources used by
different processes or threads. In the summer of 2001 I devised initial proof rules
to do just that, by adapting an approach of Hoare to reasoning about concurrency
from Hoare logic to separation logic.

This first step seemed straightforward enough, but then it hit me that we could
use the logic to track dynamically changing partitions rather than the static par-
titioning in Hoare’s approach. I used a little program, the pointer-transferring
buffer, to explore this idea, and I made a program proof in which the fact that
something was allocated seemed to move from one process to another. . . during
the proof. The pointer itself was copied, but the fact that it was allocated (and
hence the right to dereference it) was given up by the sending process. I began
talking about “knowledge” or “ownership” transferring from one process to an-
other. The striking thing was that there was no explicit concept of ownership in
the logic or proof rules, but that this transfer seemed to be encoded in the way that
the proofs of the processes worked. I circulated an unpublished note on proving
the pointer-transferring buffer in August of 2001, and then a longer note in January
2002; these documents got a lot of attention from people working on separation
logic.

It quickly became clear that quite a few concurrent programs would have much
simpler proofs than before. Modular proofs were provided of semaphore pro-
grams, of a toy memory manager, and programs with interacting resources. I got

The Bulletin of the EATCS

137

up a huge head of steam because it seemed as if the logic could explain the way
that synchronisation had been used in the fundamental works on concurrent pro-
gramming by Dijkstra, Hoare and Brinch Hansen. For example, in the paper that
essentially founded concurrent programming, Dijkstra in 1965 (Co-operating Se-
quential Processes, still the most important paper in concurrency) had explained
that the point of synchronisation was to enable programmers to avoid minute con-
siderations of timing, to simplify reasoning. Brinch Hansen had hammered into
me the importance of speed independence and resource separation for simplify-
ing thinking about concurrent processes when I was his colleague at Syracuse in
the 1990s, and what he said to me seemed to be mirrored in the proofs in this
early concurrent separation logic. And although I had never written a paper on
concurrency, I was opinionated: I thought that work in the theory of concurrency
was often missing the mark because while it could describe semaphores and other
synchronisation primitives, it did not explain their significance because it did not
connect back to simplifying reasoning; which was their whole point. Hoare had
made important steps in various points in his work, but it seemed as if we could
go much further armed with the separating conjunction.

So, years of thinking about these issues seemed poised to come together at
once in this concurrent separation logic. But, for all my opinionated excitement,
I ran into a blocker of a problem: I wasn’t able to prove soundness of my proof
rules. And it was the very feature which gave rise to the unexpected power, the
ownership or knowledge transfer, that made soundness non-obvious. I worked
hard on this problem for several months in the second half of 2001 and early in
2002, and got nowhere. Reynolds, Yang, and Calcagno, all semantics experts, also
looked at the problem. Finally, I admitted to myself that it was technically beyond
my expertise in concurrency theory and that I needed help. Luckily, I knew where
to turn. Steve Brookes and I had never worked together before, but knew one
another from way back. He was the external examiner of my 1991 PhD thesis, I
was well aware of his fundamental work with Hoare and Roscoe on the founda-
tions of CSP, and he had recently produced striking results on full abstraction for
shared-memory parallelism, what I though of as the most impressive theoretical
results in semantics of concurrency at the time. What is more, Steve had built up
a powerful repertoire of techniques for proving properties of concurrent program-
ming languages. So, sometime in 2002, I picked up the phone and gave him a
call: “Steve, I have a problem!”.

SB: As Peter said, he called me out of the blue. I knew Peter well, having served
as the external examiner on his PhD thesis, and I had kept in contact with him after
he took up his first academic positions at Syracuse and at Queen Mary (University
of London). We were in fairly regular email contact, but he didn’t normally phone
me from England; I knew this must be important. I sat in my office at Carnegie

BEATCS no 119

138

Mellon University in Pittsburgh, intrigued and fascinated to hear his ideas and
excited by the challenge he was offering me. I think he also spoke by phone at
a different time to John Reynolds, whose office was right next to mine. We all
agreed that the best plan was for Peter to come to Pittsburgh and give a talk, after
which we would do some brainstorming. That was how it started, from my view-
point. Peter came to CMU in March of 2002 and gave a talk on his new logic.
Peter was proposing a subtle and clever combination of key ideas from separation
logic and a much earlier Owicki-Gries logic for shared-memory concurrency, it-
self based on ideas appearing in a classic paper of Tony Hoare (Towards a theory
of parallel programming). Superficially the new logic was both very simple and
also very perplexing. The Hoare-style logic has a simple rule for parallel compo-
sition that combines pre- and post-conditions using conventional conjunction, and
a rule for conditional critical regions (essentially, binary semaphores) that makes
use of “resource invariants”. The inference rules ensure that a provable program
obeys what has come to be known as a “rely-guarantee” discipline: each process
assumes that whenever it acquires a semaphore the relevant invariant holds, and
guarantees that the invariant holds again when releasing the semaphore. How-
ever, the earlier logic is not sound for programs using pointers, because of the
possibility of aliasing. On the other hand separation logic was originally for-
mulated for reasoning about sequential programs using pointers, but lacked rules
for shared-memory concurrency and (until then) it was not clear how to gener-
alize. Peter introduced a radically simple and elegant way to combine the two:
an overly simplistic summary is that he allows separation logic formulas as pre-
and post-conditions (and resource invariants) and strategically replaces certain
occurrences of conjunction in the Hoare-Owicki-Gries rules with the separating
conjunction operator from separation logic. Of course this naive characterization
glosses over some profound issues: in Peter’s approach the invariants and pre-
and post-conditions are not really talking about the “global” state, but serve to
specify the “footprint” of a program component, just the piece of state on which
that component acts. I think this was the first time I saw use of terms such as
“footprint” and “ownership transfer”, notions which now seem very intuitive but
as yet had no formal semantic counterpart. (Until this point, I think it is fair to say,
semantic models for concurrent languages had typically dealt entirely with global
state, and it was conventional wisdom that it was already hard enough to find a
decent semantics for simple shared-memory programs, let alone try to incorpo-
rate mutable state, heap cells, allocation and deallocation.) My challenge was to
develop a semantic model robust and flexible enough to handle the combination
of concurrency and pointers, in which such notions as ownership transfer could
be properly formalized: to build a foundation on which to establish soundness of
Peter’s proposal. Furthermore, prior semantic models for concurrent languages
had pretty much ignored race conditions, typically by assuming that assignments

The Bulletin of the EATCS

139

were executed atomically so that races never happen. While that worked well for
“simple” shared-memory it was clearly an insufficiently sophisticated way to cope
with mutable state and the more localized view of state that is so fundamental in
Peter’s approach.

During this visit we basically barricaded ourselves in a room with Reynolds
and Calcagno, dropping all other distractions and tossing ideas around in an at-
tempt to lay out a groundplan, exploring the apparent benefits of the new logic
while probing for limitations and possibly even counterexamples. John’s wife
Mary recalls very intense discussions at the Reynolds’s household, walls covered
with sticky paper, only breaking for meals. Peter enunciated what became known
as the Separation Principle: “at all stages, the global heap is partitioned into dis-
joint parts. . . ”, another way to articulate the idea of “ownership transfer”. Again
it is easy to express these notions informally, but it turned out to be surprisingly
tricky to encapsulate them semantically, and Peter was right to be cautious.

I remember marveling at the ease with which Peter was able to articulate,
with simple-looking little programs like a one-place buffer, the kinds of problem
that arise when concurrent threads manipulate the heap. And the logic seemed
elegantly suited for reasoning about the correctness of such programs, with the
decided advantage that provable programs are guaranteed to be free of data races.
(This was also true of the earlier Hoare-Owicki-Gries logic, but only in the much
more limited setting of “simple” shared-memory without pointers.)

The use of separation in the logic neatly embodies a kind of disciplined use
of resources in programs. Yet it was by no means clear how to formalize these
ideas, and Peter was quite forthright about his unwillingness to publicize the ideas
until it had been demonstrated that it all made sense. He had circulated an “un-
published manuscript” with the title Notes on separation logic for shared-variable
concurrency, dated January 2002. Meanwhile I was excited to have a challenging
problem to work on, and intense interactions continued between Peter, John and
me as our understanding evolved.

I had plenty of experience in developing denotational semantic models for
(simple) shared-memory programs and also for communication-based languages
such as CSP. Just like the earliest denotational accounts of concurrency (dating
back to David Park in the late 70’s) the most widespread and generally most
adaptable approach was to use traces (or sequences of actions) of some kind; I had
introduced “transition traces”, built from steps that represent (finite sequences of)
atomic operations by a process, with gaps allowing for state changes made by the
“environment”. I think that transition trace semantics is what Peter was referring
to, when he mentioned full abstraction, but I should emphasize that this model
was tailored specifically to simple shared-memory and I could not see an obvious
way to adapt it to incorporate pointers. I did try! My more recent focus had been
on “action traces”, in which steps represent atomic actions but the details con-

BEATCS no 119

140

cerning state (when an action is enabled, and what state change it causes) are kept
apart: a process denotes a set of action traces, and one can then plug in a model of
state, give an interpretation of actions as state transformers, and be able to reason
rigorously about program execution. It seemed to me that action traces offered the
best basis for expansion to incorporate pointers: by augmenting the “alphabet”
of actions to include heap look-up, update, allocation and deallocation. It should
also be quite natural to treat semaphore operations (for acquiring and releasing)
as actions. It took until some time in 2003 for me to iron out the technical details
and be able to explain the key definitions and results clearly enough to be ready
for publication.

In retrospect I regard this period of a couple of years as probably the most
exciting and stimulating sustained research in which I have been involved. I am
immensely grateful to have had the opportunity to work with Peter on this project.
And throughout all of this I was strongly influenced by John Reynolds, whose
good taste, deep originality of thought and sheer intellectual inquisitiveness served
to keep me focussed. Echoing Peter’s reluctance to publish without being sure, I
always said to myself that I wouldn’t be sure until I could convince John (and
Peter!). John and I had lunch together almost every day, and I camped out in his
office whenever I had an idea that needed a sounding board. He prompted me
to always seek clearer explanations, isolate the key concepts and make the right
definitions, and strive for generality. I remember in particular that at one point,
after several weeks trying to figure out how to extend action traces, I told John
that I might be able to give a semantics in which (only) provable programs would
be definable. My naive idea was to modify the way that parallel composition gets
modelled to keep track of the preservation of resource invariants explicitly and
treat any violation as a “disaster”. I recall John upbraiding me gently about this
plan; in his view, one should develop a semantics that is “agnostic” about any in-
tended logic, and instead built to express computational properties of programs in
general terms. He did agree that we needed a semantics that reported the potential
for race conditions, an idea that is echoed in his own work. Having found such a
semantics, it ought then to be possible to show using the semantics that programs
provable in the logic are indeed race-free. In essence, that’s what happened. But
it didn’t happen overnight, and the path from start to end involved a few detours
and dead-ends before finding a robust solution.

There was a crucial role in this played by the concept of “precise” assertion. I
will hand back to Peter to make a few remarks on that.

PO: Yes, a memorable moment came when John poked his head into my office
one day: “want some bad news?”. He showed me an example where the proof rule
for critical regions together with the usual Hoare proof rule for using conjunction
in the postcondition lead to an inconsistency. This problem had nothing to do

The Bulletin of the EATCS

141

with concurrency per se, but rather was about the potential indeterminacy of the
“angel” affecting ownership transfer. (We had been attempting to get a handle on
ownership transfer by couching it in adversarial terms, involving an “angel” mak-
ing program choices and a “demon” trying to invalidate invariants or induce race
conditions.) The problem also arose in a sequential setting, in proof rules for mod-
ules that I was working on with John and Yang (which we eventually published
in Separation and Information Hiding, in POPL’04). In any case, I quickly pro-
posed a concept of “precise” assertion, one that unambiguously picks out an area
of storage, as a way to get around the problems cause by the indeterminacy of the
angel, and this concept is used in the resource invariants in concurrent separation
logic.

This indicates what a subtle problem we were up against. Some experienced
semantics researchers had been working on soundness of CSL and of information
hiding and there lurked a problem that none of us had spotted. We were lucky
that John Reynolds was not only keeping us honest by tracking our progress, but
thinking deeply about these problems himself. Concurrent separation logic owes
a lot to John’s brilliance.

That being said, this problem with the ownership angel was not the biggest
hurdle Steve had to get over. Setting up the concurrency semantics and identifying
the right properties to prove to get inductions to go through was just hard. Once he
had done it, others were able to generalize and sometimes (arguably) simplify his
proof method; e.g., in work of Calcagno, Yang, Gotsman, Parkinson, Vafeiadis,
Nanevsky, Sergey and others, and some of it drops the precision requirement (but
also the conjunction rule). But, from my perspective, Steve solving this problem
for the first time was difficult, and important. I like to say: he saved my logic!

LA: I noticed that you each published short versions of your papers in the same
conference, CONCUR’04, and then again the long versions appeared in the same
journal issue in TCS’07. How did that come about?

SB: My email to Peter and John, announcing that I had found the “right” se-
mantics and that the concurrency rules can be shown to be sound when resource
invariants are chosen to be precise, dates from early June 2003. (I also showed
that the rules remain sound when invariants are chosen to be “supported”, so that
in any state with a sub-heap satisfying an invariant there is a unique minimal sub-
heap with that property.) This was obviously very exciting and I headed over to
England to spend some time in London with Peter. Peter organized informal dis-
cussion meetings (called “yak sessions” to distinguish from full-blown seminars)
and Peter and I both gave presentations there on CSL. Philippa Gardner witnessed
these presentations, and she was so enthusiastic that she decided (as organizer for
the CONCUR 2004 conference in the following year) to invite us to give back-to-
back hour-long tutorials at that meeting. That’s how the original short versions of

BEATCS no 119

142

our papers ended up at the same conference. We felt honoured to be asked, effec-
tively, to give tutorial invited lectures on as-yet unpublished work! And thanks to
Philippa for her part in encouraging this scenario.

We published the full, journal-length versions together in TCS as tributes to
John on his 70th birthday. The Festschrift volume appeared as a book, under the
TCS imprimatur, edited by Peter along with Olivier Danvy and Phil Wadler, in
2007. There’s an amusing story that Peter reminded me of. One day Philippa was
walking with me, John and Peter, some time before the CONCUR short versions
were finalized. John was berating Peter for what he perceived perhaps as dilatori-
ness in not submitting long versions to POPL or some other conference instead of
preparing the journal-length versions; he couldn’t understand why it was taking
us so long to get around to it. What he did not realize was that the plans were
already afoot for his birthday festschrift, and we had already agreed to publish
there. After all, what better way to acknowledge the profound influence John had
on the work. Philippa leaned over to Peter and whispered that we couldn’t tell him
because those (long) papers are for his “bloody festschrift”.

LA: In your opinion and experience, how important are modularity and composi-
tionality in proving properties of programs and systems?

SB: I think the benefits of modularity — in particular, allowing more “localized”
reasoning by considering each component largely in isolation from the others —
have been touted right from the early days. For example Dijkstra was in favor of
“loose coupling”, and argued that the art of parallel program design was to en-
sure that processes can be regarded almost as independent, except for the (ideally
small number of) places where they synchronize. The claim was, and continues
to be, that this would improve our ability to manage the sheer complexity caused
by interactions between concurrent threads. For similar reasons, and dating back
to Hoare logic (1969!), we seek compositional proof systems for proving program
properties. In a compositional proof system one can derive correctness properties
of a program by reasoning about program components individually, and the in-
ference rules show how the properties of components determine the behaviour of
the whole program. In short, compositional means “syntax-directed”, and again a
major desire is to exploit syntax-directed analysis to tame the combinatorial explo-
sion. But to design a compositional logic for a specific programming language, for
use in establishing a specific class of program behaviour, you need to start with a
suitably chosen assertion language — one for which compositional reasoning like
this is even possible. This is particularly difficult for concurrent programs, since it
has long been known that Hoare-style partial correctness assertions about a multi-
threaded program cannot be deduced simply on the basis of partial correctness
properties of individual threads. A partial correctness assertion of form {p} c {q}
says that every terminating execution of c from an initial state satisfying p ends in

The Bulletin of the EATCS

143

a state satisfying q. In the early Hoare-style logics for shared-memory programs
(Hoare-Owicki-Gries, as mentioned earlier) assertions look just like conventional
partial correctness but are interpreted semantically as expressing a much more so-
phisticated property, allowing for the program to be running in an “environment”
of other processes. It has become common to describe this interpretation in terms
of “rely/guarantee”. I think one of the key ingredients in my semantic model is
that it allows formalization of the kind of ownership transfer discipline inherent
in Peter’s inference rules. Turning this on its head, you could say that the seman-
tic model supports compositional reasoning about programs whose correctness is
justified by appeal to Peter’s separation principle and the ownership discipline.
I’ll let Peter step in here too, as I’m sure he feels strongly about compositionality
as a virtue. Maybe he can say something about monitors as well, which I know
were a strong motivating factor in how he came up with the inference rules.

PO: Generally speaking, when proving a program it is possible in principle to
construct a global proof, one that talks about the global state of the system. But
global proofs tend to be much harder to maintain when the program is changed.
And programs are constantly being changed in the real world: the world won’t ac-
cept prove-it-and-forget-it proof efforts, verification needs to be active and move
with the programmers. This, even more than efficiency considerations in con-
structing proofs at the outset, is the strongest reason for wanting modularity.

Separation logic has just provided a theory that often matches the intuitive
modularity that comes up in data structure designs. The degree of modularity in
proofs that have been done has been surprising. For instance, when I was thinking
about proof rules for CSL my first idea was to axiomatize monitors (class-like
abstractions for concurrency due to Brinch Hansen and Hoare), because I thought
that low-level primitives like semaphores were too unstructured and that modu-
lar proofs would be impossible. Of course I knew that monitors could simulate
semaphores, but I didn’t expect to find nice proofs of semaphore programs. It
therefore came as a bit of a shock when I was able to provide very local indepen-
dent reasoning about semaphores in some nontrivial examples.

But, while modularity is important, you should be careful not to try to take
it too far. For instance, sometimes multiple resources participate together in the
implementation of a data abstraction, like the use of several locks in hand-over-
hand locking on linked lists. Vafeiadis and Parkinson have some lovely work
on RGSep, a descendant of the original concurrent separation logic, in which
they show how you can describe the effects of operations in a very local way,
but where the description sometimes involves two locks and a bit of a linked list,
rather than only one lock; you would just be causing yourself trouble if you tried
to formulate everything in terms of independent reasoning about the individual
locks in this case. So I like to think that you should make your specifications and

BEATCS no 119

144

proofs as modular as is natural, but not more so; logic should not block making
specifications and proofs modular, but neither should it force you to shoehorn your
descriptions into a fixed granularity of modularity.

Some of the work that follows on from mine and Steve’s work is very flexible
in the degree of abstraction that can be given to the way that state is composed
and decomposed. For instance, work of Nanevski, Sergey, Dreyer, Birkedal and
others is all based on proof methods which allow the granularity of modularity or
separation to be chosen, but specifying a partial commutative monoid of compo-
sition (in place of the standard separation logic monoid of heaplets and disjoint
union).

LA: What are some of the main developments since your papers appeared.

PO: First let me mention developments in theory. To me, the most surprising
has been the demonstration that the most basic principles of concurrent separa-
tion logic, particularly independent reasoning about threads using the separating
conjunction, cover a much broader range of situations than we ever expected.
There have been proofs of fine-grained locking and non-blocking concurrency
and cases that involve interference and general graph structures, what might have
been though of as bad cases originally for separation logic.

SB: We should also mention generalizations based on permissions (for example,
Boyland’s account of fractional permissions). In particular this path led to ver-
sions of CSL capable of dealing naturally with concurrent reads, and to some very
elegant program proofs (due to Peter with Calcagno and Bornat) in which the
correctness of the program depends on a permissive form of ownership transfer.

PO: Interestingly, the unexpected power of this is based on what you might call
“non-standard models” of separation logic; I mean this by analogy with the usual
situation in logic, where a theory (e.g. reals, or integers) has an intended model,
but then additional non-standard models of the same axioms. The proof theory
can then accomplish unexpected things when applied to the non-standard models.
The standard model of separation logic is the original model based on splitting
portions of the heap, or heaplets. There are lots of other models stemming from
the “resource semantics” of bunched logic invented by David Pym (based on hav-
ing a partial commutative monoid of possible worlds). The surprise is that some of
these nonstandard models involve composing highly intertwined structures and in-
terfering processes. Gardner coined the phrase “fiction of separation” to describe
this phenomenon in the nonstandard models.

For example, in their POPL’13 work on Views, Dinsdale-Young, Parkinson
and colleagues show that a simple abstract version of concurrent separation logic
can embed many other techniques for reasoning about concurrency including type
systems and even the classic rely-guarantee method, which was invented for the

The Bulletin of the EATCS

145

purpose of reasoning about interference. Work of Nanevski and Sergey on their
Fine-Grained Concurrent Separation Logic shows how one of the sources of non-
modularity in the classic Owicki-Gries approach to concurrency, the treatment of
auxiliary variables, can be addressed by a suitable non-standard model of sepa-
ration. They also obtain great mileage out of a model that interprets the separat-
ing conjunction in terms of a composition of histories, thus combining temporal
and spatial aspects of reasoning. Finally, Hoare and others have been pursuing
a very general theory of “Concurrent Kleene Algebra”, which encompasses mes-
sage passing as well as shared variable concurrency, and its associated program
logic is again a very general form of CSL.

Although they technically use simple abstract version of CSL, these works
conceptually go well beyond the original because the nonstandard models have
meanings so far removed from the standard models. And they represent techni-
cally significant advances as well. For instance, the Views work has a new and
very flexible proof of soundness, which is needed I think to cover the concurrency
in the nonstandard models. There is a lot happening in this space, and I have left
out other very good work by Birkedal, Dreyer, Raad, Feng, Shao and others; a
number of competing logics are being advanced, and there is just too much good
work to mention it all here. It will take some time to see these developments shake
out, but already it is clear that the principles of CSL apply much more broadly one
could have guessed at the time of mine and Steve’s papers.

Second, I would like to mention that a surprising practical development has
been the degree of progress in tools for mechanized verification. The first imple-
mentation of CSL actually preceded the publication of mine and Steve’s papers.
Cristiano Calcagno included CSL in his earliest prototypes of Smallfoot, the first
separation logic verification tool, around 2002. But, since then, many tools have
appeared for verification with CSL and relatives. Examples of the state of the
art include the Verifast tool of Jacobs et al. and the implementation in Coq of
the aforementioned Fine-grained CSL: in both tools there are examples of mecha-
nized proofs of nontrivial concurrent programs including hand-over-hand locking
on linked lists, lock-free queues, and a concurrent spanning tree construction. It
is also possible to verify custom synchronisation primitives, such as for locks
implemented using compare-and-swap, and then to use the specifications of the
primitives in verifications of client code without having to look at the lock inter-
nals.

LA: What are some of the current directions of interest, or future problems, for
research.

PO: One important direction in pure theory is unification, to bring to a form of
local conclusion all of the developments on non-standard models. I sense that
there is good and possibly deep theoretical work to be done there.

BEATCS no 119

146

SB: I agree. And I think the time is ripe for a systematic attempt to develop a
denotational framework capable of supporting such a unification. My own recent
research into the foundations of weak memory concurrency is an attempt to start
in this direction, and seems like a natural generalization from the action trace se-
mantics that we used to formalize CSL. The main idea here is to go from traces
(essentially, linearly ordered sets of actions) to a more general partial-order set-
ting. Similar themes are also appearing in work of others, and we are starting to
see papers proposing the use of pomsets (my own work, building on early ideas
of Vaughan Pratt) and event structures (originally introduced by Winskel) in se-
mantic accounts of weak memory. I think this is exciting, and I believe it would
be a valuable service to cast these developments into a uniform framework, and
to use such a framework to establish soundness of new CSL-style logics for weak
memory and explore the relationships between such logics.

PO: As I said above, there has been tremendous progress in mechanized verifica-
tion of concurrent programs; but there has been less in automatic program analy-
sis. With program analysis we would like to give programmers feedback without
requiring annotations, say by trying to prove specific integrity properties (such as
memory safety or race freedom); annotations can help the analysis along, but are
not needed to get started, and this greatly eases broad deployment. A number of
prototype concurrency analyses based on CSL have been developed, but there has
been much more work applying sequential separation logic to program analysis.
For example, the Infer program analyser, which is in production at Facebook, uses
sequential but not concurrent separation logic. To make advanced program analy-
sis for concurrency which brings value to programmers in the real world is in the
main an open problem. And not an easy one.

I would finally like to mention language design. There have been experimen-
tal type systems which incorporate ideas from CSL into a programming language,
such as the Mezzo language and Asynchronous Liquid Separation Types. Related
ideas can be found earlier in Cyclone, and more recently in the ownership typ-
ing that happens in the Rust language. It seems as if there is a lot of room for
experimentation and innovation in this space.

LA: Peter, Steve, thank you very much for sharing your recollections and knowl-
edge with the theoretical-computer-science community, and congratulations for
the 2016 Gödel Prize!

Interview with
Rajeev Alur and David Dill

2016 Alonzo Church Award Recipients

Luca Aceto
ICE-TCS, School of Computer Science,

Reykjavik University
luca@ru.is

Rajeev Alur (University of Pennsylvania USA) and David L. Dill (Stanford
University, USA) are the recipients of the 2016 Alonzo Church Award for Out-
standing Contributions to Logic and Computation for their work on timed au-
tomata, a decidable model of real-time systems that combines beautiful, new and
deep theory with widespread practical impact.

In particular, Alur and Dill are honoured for their paper “A theory of timed
automata”, Theoretical Computer Science 126(2):183–235, 1994. Fundamental
Study. http://dx.doi.org/10.1016/0304-3975(94)90010-8. That paper
proposes a variation on classic finite automata to model the behaviour of real-time
systems. The resulting notion of timed automaton provides a strikingly simple,
and yet powerful, way to annotate state-transition graphs with timing constraints
using finitely many real-valued clocks. The fundamental study by Alur and Dill
developed the model of timed automata as a formalism for accepting languages of
timed words, studied the model from the perspective of formal language theory by
considering closure properties and decision problems for the full model and some
of its sub-classes, mapped the decidability boundary for the considered decision
problems, and introduced a fundamental abstraction, the so-called region graph,
that has since found application in virtually every decidability result for models
of real-time and hybrid systems, and that is at the heart of coarser abstractions
that are embodied in the verification engines of several industrial-strength tools
for automatic verification of real-time systems.

In the twenty five years since their invention, timed automata have become
the standard model for the analysis of continuous-time systems, which underlies
hundreds of papers, tens of tools, and several textbooks.

In order to celebrate the award of the Alonzo Church Award to this hugely
influential work and to give the theoretical computer science community at large

148

a glimpse of the history of the ideas that led to it, I interviewed Rajeev Alur
(abbreviated to RA in what follows) and David Dill (referred to as DD in the text
below) via email. I hope that the readers of the Bulletin of the EATCS will enjoy
reading the text of the interview and will find it as interesting as I did.

The interview
LA: You are receiving the 2016 Alonzo Church Award for Outstanding Contribu-
tions to Logic and Computation for your invention of timed automata, which, as
far as I know, was the first decidable formalism for reasoning about the ubiquitous
class of real-time systems. Could you briefly describe the history of the ideas that
led to the development of the formalism of timed automata, what were the main
inspirations and motivations for its invention and how timed automata advanced
the state of the art?

DD: The interesting part of the story for me is the inspiration that led to the ques-
tion in the first place and the initial results. Things worked out so magically that
I’m still amazed, so I hope that the story will be interesting to others. I also learned
a lot of lessons about research, which I hope I can convey here.

I am not a logician and don’t consider myself a theorist. I generally want to do
research that has practical impact, but I like being able to apply theory to help with
that. And, in this case, I ended up creating some theory as part of that process.

My PhD research under Ed Clarke at CMU was on using finite automata for
formal verification of speed independent circuits. I started working on them us-
ing CTL model checking, and then decided during my thesis work to abandon
model checking and used finite automata (I am grateful that Ed accepted this
change in direction, since his primary research agenda was CTL model check-
ing). Speed-independent circuits are digital circuits with no clocks, which are
supposed to meet their specifications for all possible gate delays. Ed had recently
co-invented CTL model checking and was exploring speed-independent circuits
as an application, because speed-independent circuits are among the simplest con-
current systems with bugs. But speed independence is a very conservative model,
because engineers often know some constraints on delays, even if they can’t spec-
ify exact values for the delays. A circuit designer (Prof. Chuck Seitz of CalTech)
had some ways of designing speed-independent circuits that relied on timing con-
straints without precisely specified delays, and asked me whether I could prove
such circuits correct.

I looked at the literature, and there were a number of people who had used
finite automata with a special alphabet symbol representing clock ticks, and they
would simply count the clock ticks using the states of the automaton (what was
later called a discrete time model). But I wasn’t comfortable with that, because

The Bulletin of the EATCS

149

asynchronous circuits don’t have clocks! I felt that events in circuits happened in
continuous time, which might be different from discrete time – but I didn’t know.

While I was working on my PhD, I sat down to try to work out a method to
verify timed asynchronous circuits. The research was painless compared to a lot
of my other PhD work. I imagined that each gate had a timer that was set to a real
value between constant delay bounds, and that these timers decreased continually
with time until the reached 0, at which point the gate output would change. Very
quickly, I came up with an algorithm that kept track of the set of all possible timer
values for various discrete states, and, magically, the analysis of the regions could
be easily solved using the all-pairs shortest paths problem. I think I just got lucky
and happened to think about it the right way, so it was easy to do. (Later, I learned
that Vaughan Pratt had observed that certain systems of linear inequalities could
be solved using shortest paths, and that a similar algorithm was used in a kind of
timed Petri nets – but I didn’t know that at the time).

I left this method out of my PhD thesis, because my thesis seemed coherent
and the timed model didn’t seem to mesh with the other material. Then, in my first
few years at Stanford, I pulled it out again and tried to prove that it was actually
sound. Getting the details right was harder than working out the original idea. It
took several weeks. The paper eventually appeared in CAV ’89.

Verification with linear time (as opposed to branching time) models seemed
beautiful to me because all the problems reduced to standard closure properties
and decision properties that had been solved for finite automata: Closure under
intersection, complementation, and projection, and the decidability of language
emptiness. Implicit in my CAV paper were closure under intersection, projection,
and the decidability of emptiness for timed regular languages, but I couldn’t prove
closure under complementation. I felt very strongly that timed regular languages
were closed under complementation and would work the same way as conven-
tional finite automata.

Then Rajeev Alur walked into my office. He was a second year student who
was ready to do some research, and his research advisor, Zohar Manna, was out of
the country for a while. I explained timed automata to Rajeev and asked whether
he could resolve the question of whether they were closed under complementa-
tion. Rajeev very quickly came up with a nicer definition of timed automata,
with clocks that counted up and predicates, and an “untiming” construction for
deciding language emptiness that had lower complexity than mine. I remember
it took him several months to prove that, in fact, timed automata were not closed
under complementation and that, surprisingly, the universality problem was unde-
cidable. He proved several other amazing results, and then we wrote the “Timed
Automata” paper. The paper was rejected twice from conferences with pretty
harsh reviews (I think FOCS was one conference — I don’t remember the other
one) and was eventually accepted at ICALP.

BEATCS no 119

150

I’m not sure why it was so poorly received. I don’t remember changing it
much when we resubmitted it. I think there is a problem when you formulate
a new problem and solve it, but reviewers don’t understand why the problem is
important. If the solution is a bit difficult, they look for reasons to reject the paper.
If you attack a well-known problem so everyone knows why you want to solve it,
it’s sometimes easier to sell the paper (but maybe it won’t have as much impact).
Or maybe we just had some bad luck — everyone gets bad reviews, and I’ve
unfortunately written some bad reviews myself.

RA: I joined Stanford University in 1987 as a graduate student primarily inter-
ested in logic and theory of computation. Topics such as model checking, tempo-
ral logics, and automata over infinite strings were hot topics then, and extending
these formalisms to reasoning about real-time systems was a natural research di-
rection.

For me, the key starting point was Dave’s wonderful paper titled “Timing as-
sumptions and verification of finite-state concurrent systems” that appeared in
CAV 1989. Dave has already explained how he arrived at the idea of difference
bounds matrices that appeared originally in his paper, and I will explain two new
ideas in our follow-up work aimed at generalizing the results. Dave’s original pa-
per modeled timing constraints by introducing timers each of which could be set
to a value chosen nondeterministically from a bounded interval, decreased with
time, and triggered an event upon hitting 0. We changed the model by introduc-
ing clock variables each of which could be reset to 0, increased with time, and
could be tested on guards of transitions. In retrospect, this led to a simpler model,
and more importantly, led naturally to many generalizations such as hybrid au-
tomata. The second idea was the definition of region equivalence that defines a
finite quotient over the infinite set of clock values. This proved to be a versatile
tool and forms the basis of many decidability results, and in particular, algorithms
for model checking of branching-time temporal logics.

LA: According to Google Scholar, the journal paper for which you receive the
Alonzo Church Award, which was published in 1994, has so far received over
6,500 citations, whereas the ICALP 1990 on which it was based has been cited
over 1,250 times. A Google Scholar query also reveals that at least 135 publica-
tions citing your landmark TCS paper have more than 135 citations themselves.
Moreover, the most successful and widely used tools for modelling and verifica-
tion of real-time systems are based on timed automata. When did it dawn on you
that you had succeeded in finding a very good model for real-time systems and
one that would have a lot of impact? Did you imagine that your model would
generate such a large amount of follow-up work?

DD: It will be really interesting to hear what Rajeev says about this.

The Bulletin of the EATCS

151

At the time, I just felt happy that we had a nice theory. I was looking around
for other uses besides asynchronous circuits to which timed automata would be
applicable, and, based on the name, “real-time systems” seemed like a good can-
didate. But I didn’t know much about the practical side of that area, and timed
automata didn’t seem to be directly applicable to many of the problems they wor-
ried about (there were a lot of papers on scheduling!).

It took a very long time before I was confident that timed automata were useful
for anything, including real-time systems. So, for me, it was based on feedback
from other people. I got some grant money to work on the problem, which was a
good sign. People from control theory and real-time systems invited me to come
and talk to them about it. It may be that timed model checking (which is very
closely related) has had more practical impact than timed automata themselves.
Other people built tools that were better than anything I created.

After a few years, the area got too hard for me. Others, especially Rajeev, were
doing such a good job that I didn’t feel that my efforts were needed. So, I moved
on to new topics in formal verification and asynchronous circuit design. Now I
only have a fuzzy idea about the impact of timed automata, embarrassingly.

RA: The initial reception to our work was not enthusiastic. In fact, the paper was
rejected twice, once from FOCS and once from STACS, before it was accepted
in ICALP 1990. There was also a vigorous argument advocated by a number of
prominent researchers that modeling time as a discrete and bounded counter was
sufficient. By mid 1990s though the model started gaining acceptance: in the-
ory conferences such as CONCUR, ICALP, and LICS a steady stream of papers
studying complexity of various decision problems on timed automata and exten-
sions started, and a number of implementations such as KRONOS and UPPAAL
were developed. However, I could have never imagined so much follow-up work,
and I feel very grateful to all the researchers who have contributed to this effort.

LA: What is the result of yours on timed automata you are most proud of? And
what are your favourite results amongst those achieved by others on timed au-
tomata?

DD: I’m most proud of coming up with the question and the initial (not so hard)
results. To me, the question seemed so completely obvious that I couldn’t believe
it hadn’t been answered. I contributed to some of the later results, but Rajeev took
off like a rocket and I couldn’t keep up with him. At some point, there was so
much work in the area that I didn’t feel I had much to add. I know there are a lot
of amazing results that I haven’t studied.

I like the fact that timed automata formed a paradigm that others followed with
hybrid automata and so on. The idea of extending finite automata with other gad-
gets, like clocks, and analyzing the resulting state space seems to have influenced
people as much as the results on timed automata.

BEATCS no 119

152

RA: There are lots of strong and unexpected results that I like and it is hard to
choose. But since you asked, let me point out two which are closely related to our
original paper. The paper by Henzinger et al. titled “Symbolic model checking
of real-time systems” (LICS 1992) introduced the idea of associating invariants
with states. I think this is a much cleaner way of expressing upper bounds on
delays and, in fact, is now part of the standard definition of timed automata. In
our original paper, we had proved undecidability of timed language equivalence.
Cerans showed in 1992 decidability of timed bisimulation which I did not expect
and involves a clever use of region equivalence on product of two timed automata.

LA: Twenty five years have passed since the invention of timed automata and the
literature on variations on timed automata as well as logics and analysis techniques
for them is huge. Do you expect any further development related to theory and
application of timed automata in the coming years? What advice would you give
to a PhD student who is interested in working on topics related to timed automata
today?

DD: I’m sorry, but I haven’t actively pursued the area and I just don’t know.
If I were giving advice to a younger version of me, knowing my strengths and
weaknesses, I would actually advise that person to go and find a new problem that
hasn’t been worked on much. Maybe you’ll start a new field, and you’ll get to
solve the first problems in the area before it gets too hard. What has worked for
me was looking at an application problem, trying to find a clean way to formalize
it, and then looking at the problems stemming from that formalization. It’s an
amazing fact that there are fundamental questions that haven’t been addressed at
all. Starting with a practical problem and then thinking about what theory would
be helpful to solve it is a good way to come up with those questions. Also, watch
for cases where existing theory doesn’t exactly fit. Instead of trying to pound nails
with a wrench, imagine a more appropriate, but simple, theory and invent that.

RA: I feel that theoretical problems as well as verification tools have been exten-
sively investigated. Given that, my advice would be to first focus on an applica-
tion. When one tries to apply an existing technique/tool to a real-world problem,
there is invariably a mismatch and that insight can suggest a research idea. The
emerging area of cyber-physical systems is a rich source of applications. For
instance, formal modeling and analysis of medical devices can be a fruitful direc-
tion.

LA: You have both been involved in inter-disciplinary research with colleagues
from biology and control theory. What general lessons have you learned from
those experiences? What advice would you give a young researcher who’d like to
pursue that kind of research?

DD: On reflection, my research in formal verification was not as collaborative as

The Bulletin of the EATCS

153

it could have been. But in computational biology, if you don’t have a wet lab, you
really have to collaborate with other people! Collaboration can be rewarding but
also frustrating. My advice would be: learn as much about the other area as you
can, so you can at least talk the same language as your collaborators. And prepare
to invest lots of time communicating and understanding what motivates them –
and make sure they’re willing to do the same, otherwise, it’s a collaboration that
is not going to work out. What keeps you working together is mutual benefit.

Most collaborations don’t work out. If you have a good collaborator, be grate-
ful. And, sometimes, you may want to choose among research directions based
on which ones have the best collaborators.

LA: David, Rajeev, many thanks for taking the time to share your views with the
members of the TCS community and congratulations for receiving the first Alonzo
Church Award!

The Bulletin of the EATCS

155

E u r o p e a n

A s s o c i a t i o n f o r

T h e o r e t i c a l

C omp u t e r

S c i e n c e

E A T C S

BEATCS no 119

156

EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area

The Bulletin of the EATCS

157

(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994

- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997
- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

BEATCS no 119

158

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Dr. Luca Aceto,
School of Computer Science
Reykjavik University
Menntavegur 1 IS-101 Reykjavik, Iceland
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 30 for a period of one year (two years for students / Young Researchers). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 25 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 25 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.

HOW TO JOIN EATCS

The Bulletin of the EATCS

159

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid (in order of preference) by
VISA or EUROCARD/MASTERCARD credit card, by cheques, or convertible currency cash.
Transfers of larger amounts may be made via the following bank account. Please, add e 5 per
transfer to cover bank charges, and send the necessary information (reason for the payment, name
and address) to the treasurer.

BNP Paribas Fortis Bank, Driekoningenstraat 122, 2600 Berchem - Antwerpen, Belgium
Account number: 220–0596350–30–01130
IBAN code: BE 15 2200 5963 5030, SWIFT code: GEBABE BB 18A

For adittional information please contact the Secretary of EATCS:
Prof. Ioannis Chatzigiannakis,
via Ariosto 25, floor II, room B214,
Sapienza University of Rome,
Rome 00185, Italy
Email: secretary@eatcs.org,

Tel: +39 677274073, Fax: +39 0677274002

